
Technical Report
CMU/SEI-96-TR-022
ESC-TR-96-022

Carnegie-Mellon University

Software Engineering Institute

Cleanroom Software Engineering

Reference Model

Version 1.0

Richard C. Linger

Carmen J. Trammell

November 1996

AttBvoved toi gättie tetaaMt

19961220 106

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment, or administration
of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of the
Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion, creed,
ancestry, belief, age, veteran status, sexual orientation or in violation of federal, state, or local laws or executive orders. However, in the judgment of the
Carnegie Mellon Human Relations Commission, the Department of Defense policy of, "Don't ask, don't tell, don't pursue," excludes openly gay, lesbian and
bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes at Carnegie Mellon University are available to
all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA
15213, telephone (412) 268-6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone
(412) 268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

Technical Report
CMU/SEI-96-TR-022

ESC-TR-96-022
November 1996

Cleanroom Software Engineering Reference Model
Version 1.0

Richard C. Linger

Software Engineering Institute

Carmen J. Trammell

University of Tennessee

Process Program

Unlimited distribution subject to the copyright

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, PA 15213

This report was prepared for the

SEI Joint Program Office
HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THRCOMMANDER

fhomas R. Miller, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1996 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative
works.

Requests for permission to reproduce this document or to prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRAN-
TIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTIBILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through Research Access, Inc., 800 Vinial Street, Pittsburgh, PA 15212.
Phone: 1-800-685-6510. FAX: (412) 321-2994. RAI also maintains a World Wide Web home page. The URL is

http://www.rai.com

Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of
Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides ac-
cess to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential con-
tractors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact
DTIC directly: Defense Technical Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-

6145. Phone: (703) 274-7633.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Contents
List of Figures iü

Acknowledgments iy

1 The Cleanroom Software Engineering Reference Model 1

2 Cleanroom Software Engineering Overview 3

2.1 Developing Software Under Statistical Quality Control 3

2.2 Cleanroom Application and Results 4

3 Cleanroom Software Engineering Technology 7

3.1 Incremental Development Life Cycle 7

3.2 Precise Specification and Design 8

3.3 Correctness Verification 10

3.4 Statistical Testing and Software Certification 10

3.5 Software Reengineering 11

4 Cleanroom Software Engineering Processes 13

4.1 The Cleanroom Processes 13

4.2 Cleanroom Process Flow 14

4.3 Cleanroom Process Application: Scenarios of Use 16

4.4 Cleanroom Teams 17

4.5 Cleanroom Process Definitions 18

Common Cleanroom Process Elements 21

Cleanroom Management Processes
Project Planning Process 26
Project Management Process 32
Performance Improvement Process 37

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model ■ i

Engineering Change Process 41

Cleanroom Specification Processes
Requirements Analysis Process 45
Function Specification Process 50
Usage Specification Process 56
Architecture Specification Process 63
Increment Planning Process 68

Cleanroom Development Processes
Software Reengineering Process 73
Increment Design Process 79
Correctness Verification Process 86

Cleanroom Certification Processes
Usage Modeling and Test Planning Process 94
Statistical Testing and Certification Process 103

5 Cleanroom Software Engineering Work Products Ill

6 References 121

Portions of this Technical Report will appear as part of a book in the SEI series in Software Engineering, entitled
Cleanroom Software Engineering, by Richard C. Linger and Carmen J. Trammell. The book will be published by the
Addison-Wesley Publishing Company, Reading, Ma.

ii ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

List of Figures

Figure 1 Cleanroom Process Flow 16

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model ■ iii

Acknowledgments

The authors express appreciation to the many reviewers of this document for
their careful review and excellent suggestions. The reviewers included Ingrid
Biery, Earl Billingsley, Philip Hausler, Alan Hevner, David Kelly, Ara
Kouchakdjian, Don O'Neill, Rose Pajerski, Jesse Poore, Dave Pearson, Ron
Radice, Kirk Sayre, Wayne Sherer, Alan Spangler, and Gwen Walton. The
authors express special thanks to David Kelly and Wayne Sherer for their
extensive review and comments.

iv ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model

1 The Cleanroom Software Engineering
Reference Model

Cleanroom software engineering is a theory-based, team-oriented process for
development and certification of high-reliability software systems under
statistical quality control [Mills 92, Linger 93, Linger 94]. A principal objective of
the Cleanroom process is development of software that exhibits zero failures in
use. The Cleanroom name is borrowed from hardware Cleanrooms, with their
emphasis on rigorous engineering discipline and focus on defect prevention
rather than defect removal. Cleanroom combines mathematically-based methods
of software specification, design, and correctness verification with statistical,
usage-based testing to certify software fitness for use. Cleanroom projects have
reported substantial gains in quality and productivity.

This report defines the Cleanroom Software Engineering Reference Model, or
CRM. The CRM is expressed in terms of a set of 14 Cleanroom processes and 20
work products. It is intended as a guide for Cleanroom project management and
performance, process assessment and improvement, and technology transfer and
adoption. The remainder of the report is organized into the following sections:

Section 2: Cleanroom Software Engineering Overview

This section describes characteristics of Cleanroom project
performance.

Section 3: Cleanroom Software Engineering Technology

This section introduces the technologies embodied in the
Cleanroom processes.

Section 4: Cleanroom Software Engineering Processes

This section defines the 14 Cleanroom processes, organized into
categories for project management, software specification, software
development, and software certification.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model

Section 5: Cleanroom Software Engineering Work Products

This section defines the purpose and content of the 20 work
products produced by the Cleanroom processes.

The material in this report is not intended to teach the reader how to practice
Cleanroom software engineering; that requires attending courses on Cleanroom
management and technology. Rather, the intent of this document is to define a
reference model that embodies the principal processes and methods of
Cleanroom as a guide to project performance by trained teams. It also serves as a
baseline for continued evolution of Cleanroom practice.

The scope of the CRM is software management, specification, development, and
testing. A number of related activities are not addressed in the reference model,
such as marketing, distribution, installation, customer support, and other
essential aspects of product success.

As use of the Cleanroom process grows, interest in its relationship to the
Capability Maturity Model (CMMsm) for Software has increased. The CRM has
been mapped to the Key Process Areas (KPAs) of the CMM for Software. The
mapping is described in the following SEI Technical Report:

Linger, Richard C; Paulk, Mark C; & Trammell, Carmen J. Cleanroom Software
Engineering Implementation of the CMM for Software (CMU/SEI-96-TR-023).
Pittsburgh, Pa.: Software Engineering Institute, Carnegie Mellon University, 1996.

Cleanroom provides an effective implementation of much of the CMM for
Software. The Cleanroom Reference Model is a framework for defining an
organization- or project-specific Cleanroom process, and the CMM mapping of
the reference model provides linkage to the CMM Key Process Areas. Their
combination represents an "enriched CMM" and an "enriched Cleanroom
process" that incorporates substantial management, organizational, and
engineering capability.

CMM and Capability Maturity Model are service marks of Carnegie Mellon University.

Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

2 Cleanroom Software Engineering Overview

2.1 Developing Software Under Statistical Quality Control

The Cleanroom process embeds software development and testing within a
statistical quality control framework. Mathematically-based software
development processes are employed to create software that is correct by design
[Linger 94], and statistical usage testing processes are employed to provide
inferences about software reliability [Mills 92]. This systematic process of
assessing and controlling software quality during development permits
certification of software fitness for use at delivery.

The value of a process under statistical quality control is well illustrated by
modern manufacturing processes where the sampling of output is directly fed
back into the processes to control quality. Once the discipline of statistical quality
control is in place, management has objective visibility into the software
development process and can control process changes to control product quality.

Key characteristics of the Cleanroom process are an incremental development
life cycle and independent quality assessment through statistical testing. The
development life cycle starts with a specification that not only defines function
and performance requirements, but also identifies operational usage of the
software and a nested sequence of user-function subsets that can be developed
and tested as increments which accumulate into the final system. Disciplined
software engineering methods provide design and verification techniques
required to create correct software. Correctness verification by development
teams is used to identify and eliminate defects prior to any execution of the
software.

Software execution is controlled by an independent certification team that uses
statistical testing methods to evaluate software quality. Statistical testing results
in objective quality certification of software at delivery and provides a scientific
basis for generalizing reliability estimates to operational environments.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model

2.2 Cleanroom Application and Results

The Cleanroom processes can be applied to development of new software
systems and evolution of legacy systems:

New Systems. The Cleanroom processes provide a rigorous management
and technical framework for developing new software systems under
intellectual control. Theory-based processes for specification, design, and
verification produce software that exhibits very high quality at the
inception of testing. Incremental development permits early quality
assessment through statistical testing and user feedback on system
function, and avoids risks associated with component integration late in
the life cycle.

Legacy Systems. Modifications and extensions to legacy systems can be
developed with the Cleanroom processes. Components of legacy systems
can be re-engineered to Cleanroom quality through use of structuring,
design abstraction, correctness verification, and statistical testing
techniques.

Cleanroom is language-, environment-, and application-independent, and has
been used to develop and evolve a variety of systems, including real-time,
embedded, host, distributed, workstation, client-server, and microcode systems.
Cleanroom supports prototyping and object-oriented development [Ett 96], and
enables reuse through precise definition of common services and component
functional semantics, and certification of component reliability.

The Cleanroom process has been demonstrated in software development
projects in industry, as well as in NASA and the DoD STARS (Software
Technology for Adaptable, Reliable Systems) program. Experience has shown
substantial improvements over traditional results [Basili 94, Hausier 94, Linger
94]:

Quality. Improvements of 10 to 20X and substantially more over baseline
performance have been reported. Failures in field use have been greatly
reduced over prior experience. For example, IBM developed an embedded,
real-time, bus architecture, multiple-processor device controller product
that exhibited no failures in three years use at over 300 customer locations
[Linger 94].

Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

Productivity. Significant improvements over baseline performance have
been reported. For example, an Ericsson Telecom project to develop a 374
KLOC operating system reported gains of 1.7X in development
productivity [Hausier 94], and an IBM project to develop a network
management and outage avoidance product reported a 2X improvement
in development productivity [Hausier 92]. The US Army Picatinny
Arsenal STARS demonstration project reported a 4.6X productivity gain
[Sherer96].

Life cycle costs. Reductions in life cycle costs through decreases in testing,
error correction, and maintenance have been reported. For example, IBM
developed a COBOL structuring product that exhibited just seven minor
errors in the first three years of field use, all simple fixes, with a
corresponding drop in maintenance costs compared to baselines for
similar products [Linger 88].

Return on investment. Reports have shown that Cleanroom adoption costs
can be recovered on the first project through increased effectiveness in
development and testing and reduced error correction and rework. For
example, a 21 to 1 return-on-investment in Cleanroom technology
introduction has been reported by the Picatinny Arsenal STARS
Cleanroom project [Sherer 96].

There are other benefits of the Cleanroom process that are less easily quantified.
Statistical testing provides project managers with scientific measures of software
quality for objective decision making on whether and when to stop testing and
release products. These measures also provide projections of software quality in
operational use. In combination with incremental development, this fine-
grained measurement process substantially improves the predictability of
software development. Increases in job satisfaction for Cleanroom teams have
also been reported [Sherer 96]. These increases are due in part to improved
communication and coordination among team members, based on the shared
understandings and uniform work products that Cleanroom methods afford.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model

Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

3 Cleanroom Software Engineering Technology

The Cleanroom processes employ the following technologies for project
management and software specification, design, and testing.

3.1 Incremental Development Life Cycle

Cleanroom management is based on development and certification of a pipeline
of user-function software increments that accumulate into the final product
[Linger 94]. Incremental development enables early and continual quality
assessment and user feedback, and facilitates process improvements as
development progresses. The incremental approach avoids risks inherent in
component integration late in the development cycle. Incremental development
permits systematic management and incorporation of requirements changes
over the development cycle.

The technical basis for incremental development in Cleanroom is the
mathematical property of referential transparency. In the context of software
development, this property requires that a specification and its design
decomposition define the same mathematical function, that is, the same
mapping from the domain of inputs to the range of correct outputs. When this
property holds, a design can be shown to be correct with respect to its
specification.

In practice, the requirement for referential transparency places constraints on the
functional content and order of design decomposition of a software system. User
functions are organized for development into a sequence of verifiable and
executable software increments, each providing additional function. The
functional content of the increments is defined such that they accumulate into
the complete set of functions required for the final system. Architectural
requirements and risk avoidance strategies place additional constraints on
increment content. For correctness, each increment must satisfy its parent
specification through the functions it provides combined with the
subspecifications it contains for future increments. For statistical testing and
certification, each increment can contain stubs as placeholders for future
increments to permit execution in the system environment. Each new
increment replaces stubs in the evolving system and satisfies the

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model ■ 7

subspecifications associated with it. In this way, referential transparency is
maintained throughout system development. Referential transparency in
incremental development is important for maintaining intellectual control in
Cleanroom project management.

A more extensive explanation of incremental development is found in
[Trammell 96].

3.2 Precise Specification and Design

A key Cleanroom principle is that programs can be regarded as rules for
mathematical functions (or relations). That is, programs carry out
transformations from input (domain) to output (range) that can be precisely
specified as function mappings. Programs can be designed by decomposing their
function specifications, and can be verified by abstracting and comparing their
designed functions to their function specifications for equivalence. This concept
is scale-free, with application ranging from large specifications for entire systems
down to individual control structures (sequence, ifthenelse, whiledo), and to
every intermediate decomposition and verification along the way.

Three special types of mathematical functions are important in Cleanroom
development because of their correspondence to useful system views, and their
interrelationships in a stepwise decomposition and verification process. These
forms are known as black box, state box, and clear box, and collectively, as box
structures [Mills 86]. Box structures are used extensively by Cleanroom
specification and development teams. Other methods may also be used to
implement the Cleanroom principles of mathematically-based software
specification and development; the box structure method is used in this
reference model due to its prominence and proven capabilities in Cleanroom
practice.

Box structures map system stimuli (inputs) and the stimulus histories (previous
inputs) into responses (outputs). A black box defines the required external
behavior of a software system or system part in all possible circumstances of use.
The transition function of a black box is

((current stimulus, stimulus history) —> response).

That is, a black box maps the current stimulus into a response that also depends
on the history of stimuli received. For example, given a stimulus of 5, a hand

Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

calculator will produce a response of 175 if the stimulus history is C 1 7 (C for
Clear), but a response of 5 if the history is C 1 7 +. The stimulus is the same in
both cases, but the histories of stimuli are different, leading to different
responses. A black box definition is state-free and procedure-free, referencing
only external, user-observable stimuli and responses. Black box definitions are
often given in tables with columns for current stimulus, conditions on history,
and responses. Abstraction techniques—for example, conditions on stimulus
histories—permit compact descriptions in scaling up to large systems.

A state box is derived from and verified against a corresponding black box. The
state box transition function is

((current stimulus, current state) --> (response, new state)).

That is, a state box maps the current stimulus and the current state into a
response and a new state. In the state box, the stimulus history of the black box is
replaced by retained state data necessary to achieve black box behavior. A state
box definition is procedure-free, and isolates and focuses on state invention.
State box definitions are often given in tables with columns for current stimulus,
current state, response, and new state.

A clear box is derived from and verified against a corresponding state box. The
clear box transition function is

((current stimulus, current state) -> (response, new state)) by procedures.

In the clear box, the procedures required to implement the state box transition
function are defined, possibly introducing new black boxes for further
decomposition into state and clear boxes. That is, a clear box is a program, or set
of programs, that implements the state box and introduces and connects
operations in a program structure for decomposition at the next level. Such
connections are critical to maintaining intellectual control in large-scale software
development.

Box structures can be applied to a variety of decomposition strategies, including
functional, object oriented, etc. In the object oriented case, the black box defines
the behavior specification of an object, the state box defines its data
encapsulation, and the clear box defines its procedural services or methods [Ett
96]. Box structures also provide a systematic framework for incorporating reused
and COTS software.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model

A principal value of box structures lies in the referential transparency between
box decompositions that helps maintain intellectual control in large-scale
software developments. Box structures play a primary role in function
specification, architecture specification, and increment design.

A full explanation of box structure specification and design is given in [Mills 86].

3.3 Correctness Verification

All Cleanroom-developed software is subject to function-theoretic correctness
verification by the development team prior to release to the certification test
team. The function-theoretic approach permits development teams to
completely verify the correctness of software with respect to specifications. A
Correctness Theorem defines conditions to be met for achieving correct software
[Linger 79]. These conditions are verified in mental/verbal proofs of correctness
in development team reviews. Programs contain an infinite number of paths
that cannot all be checked by path-based inspections or software testing.
However, the Correctness Theorem is based on verifying individual control
structures (sequence, ifthenelse, whiledo, etc.) rather than tracing paths. Because
programs contain a finite number of control structures, the Correctness Theorem
reduces verification to a finite number of checks, and permits all software logic to
be verified in possible circumstances of use. The verification step is remarkably
effective in eliminating defects, and is a major factor in the quality
improvements achieved by Cleanroom teams. The Correctness Conditions
defined by the Theorem for fundamental control structures are given in the
Correctness Verification Process in this document.

A full explanation of function-theoretic verification is given in [Linger 79].

3.4 Statistical Testing and Software Certification

The set of possible executions of a software system is an infinite population. All
testing is really sampling from that infinite population. No testing process, no
matter how extensive, can sample more than a minute fraction of all possible
executions of a software system. If the sample embodied in a set of test cases is a
random sample based on projected usage, valid statistical estimates of software
quality and reliability for that usage can be obtained [Mills 92, Whittaker 93].

10 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

Statistical usage testing [Poore 95a, Trammell 95, Walton 95a] of a software
system produces scientific measures of product and process quality for
management decision-making, just as has been done in hardware engineering
for decades.

The objective of the certification team is to provide scientific certification of
software fitness for use, not to "test in" quality (an impossible task). The
certification team creates usage models which define all possible scenarios of use
of the software, together with their probabilities of occurrence. Multiple models
can be defined to address different usage environments, or to provide
independent certification of stress situations or infrequently used functions with
high consequences of failure. Usage can be defined in Markov models that
permit substantial management analysis and simulation of test operations prior
to software development, as well as automatic test case generation [Walton 95a,
Whittaker 93]. Other methods may also be used to implement the Cleanroom
principles of statistically-based software testing and certification; the Markov
approach is used in this reference model due to its prominence and proven
capabilities in Cleanroom practice.

Following correctness verification, software increments are delivered to the
certification team for first execution. If required, other forms of testing can be
applied prior to statistical testing. Test cases are randomly generated from the
usage models, so that every test case represents a possible use of the software as
defined by the models. Objective statistical measures of software reliability and
fitness for use can be computed based on test results for informed management
decision-making. Because statistical usage testing tends to detect errors with high
failure rates, it is an efficient approach to improving software reliability.

A more extensive discussion of statistical certification testing can be found in
[Walton 95a, Whittaker 93, Whittaker 94a].

3.5 Software Reengineering

Non-Cleanroom-developed software can be incorporated into Cleanroom
projects. Such software may require reengineering to enable developers to
maintain intellectual control and to achieve Cleanroom levels of quality and
reliability.

Unstructured software can be transformed into structured form for improved
understandability and maintenance through application of the Structure

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model ■ 11

Theorem [Linger 79]. The constructive proof of the theorem defines a systematic
procedure for transforming unstructured logic into function-equivalent
structured form. The procedure can be carried out manually, or fully or partially
automated if large quantities of software must be structured.

Missing or incomplete designs and specifications of existing structured programs
can be recovered and documented through systematic analysis and abstraction
based on function-theoretic techniques. An example of function abstraction for
recovery of specifications is given in the Software Reengineering Process in this
document.

A full explanation of program structuring and function abstraction is given in
[Linger 79].

12 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

4 Cleanroom Software Engineering Processes

4.1 The Cleanroom Processes

This section defines the 14 processes that comprise the practice of Cleanroom
software engineering. These processes form a comprehensive guide to
Cleanroom project performance for software teams trained in Cleanroom
methods. They embody the Cleanroom technologies described in the previous
section. The processes are listed below in four sets corresponding to the principal
functions in Cleanroom projects. Work products produced in each of the
processes are shown in italics. The work products are discussed in the process
definitions and summarized in Section 5.

Cleanroom Management Processes
Project Planning Process

Cleanroom Engineering Guide
Software Development Plan

Project Management Process
Project Record

Performance Improvement Process
Performance Improvement Plan

Engineering Change Process
Engineering Change Log

Cleanroom Specification Processes
Requirements Analysis Process

Software Requirements
Function Specification Process

Function Specification
Usage Specification Process

Usage Specification
Architecture Specification Process

Software Architecture
Increment Planning Process

Increment Construction Plan

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model ■ 13

Cleanroom Development Processes
Software Reengineering Process

Reengineering Plan
Reengineered Software

Increment Design Process
Increment Design

Correctness Verification Process
Increment Verification Report

Cleanroom Certification Processes
Usage Modeling and Test Planning Process

Usage Models
Increment Test Plan
Statistical Test Cases

Statistical Testing and Certification Process
Executable System
Statistical Testing Report
Increment Certification Report

4.2 Cleanroom Process Flow

Figure 1 depicts a typical flow and interaction among the Cleanroom processes.
The four management processes affect all Cleanroom operations, and are shown
across the top of the figure at (1-4). In the Project Planning Process, which may be
repeatedly invoked during the project, the team tailors the Cleanroom processes
for the project environment and creates and maintains software development
plans. These plans are used in the Project Management Process for managing
and controlling incremental development and certification. The Performance
Improvement Process is used to continually assess project performance in
applying the Cleanroom processes, and to identify and implement
improvements. The Engineering Change Process provides necessary
configuration management and engineering discipline for all change activity.

At (5), the Architecture Specification Process likewise spans the entire life cycle,
in analyzing architectural assets and defining architectural structures and
strategies for software development at multiple levels of abstraction.

14 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

At (6), the Requirements Analysis Process is used to create an initial definition
of customer requirements. This definition is then expressed in precise terms in
the Function Specification Process (7), producing a specification of required
external behavior, and the Usage Specification Process (8), producing a
specification of users, usage environments, and patterns of use of the software
system. The Increment Planning Process (9) allocates specified software functions
into a set of increments, and schedules their development and certification
within the structure of the overall project schedule.

Prior to development and certification of each increment, the analysis and
specification processes at (6-8) may be revisited to validate requirements and
incorporate feedback from customer assessment of prior increments. The
processes at (10-14) are invoked iteratively for development and certification of
successive increments. At (10-12), the Software Reengineering Process prepares
existing software for use in an increment, and the Increment Design and
Correctness Verification Processes are employed to develop the detailed design
and code for an increment, and to verify their correctness. At (13), the Usage
Modeling and Test Planning Process is used to create required usage models and
test plans. Finally, at (14), the Statistical Testing and Certification Process is
employed to test an increment using test cases generated from the usage models,
and to assess an increment's fitness for use in terms of statistical measures.
Certified increments are provided to the customer for assessment and
requirements validation.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model ■ 15

(1-4) Project Planning, Project Management, Performance Improvement, and Engineering Change

(5) Architecture Specification

Full Cleanroom Process Cycle

Analysis/Specification Process Cycle

(7) (10-12)

h Jl

Function
Specification

6) 9)

Requirements
Analysis

w Increment
Planning

I

(8)

Usage
Specification Accumulating

specifications
for customer
evaluation

Software Reengineering,
Increment Design,

Correctness Verification

(14)

Statistical Testing
and Certification

(13)

Usage Modeling and
Test Planning Accumulating

certified
increments
for customer
evaluation

Figure 1. Cleanroom Process Flow

4.3 Cleanroom Process Application: Scenarios of Use

Cleanroom is a well-defined yet flexible engineering process. It scales up for
development of systems of arbitrary size and complexity, and scales down for
development of small, stand-alone applications. The Cleanroom processes and
the technology they embody are intended to be applied by management in
flexible ways based on the project environment and objectives, as the following
examples illustrate.

1. Unprecedented Systems

When customer requirements are uncertain, the process flow of Figure 1 may
undergo several rapid traversals to develop and evolve prototypes for customer
assessment and requirements elicitation. In this case, certain process steps may be
scaled back or deferred if limited-scope, short-lived prototypes are intended, or,
alternatively, process steps may be fully implemented if broader-scope prototypes
are intended to be scaled up to full systems.

16 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

2. Embedded Software

Embedded software systems that perform critical functions often face very high
failure costs in terms of potential product recalls. It can make economic sense in
developing such systems to take a more rigorous, granular approach to the
Function Specification, Usage Specification, Increment Design, Correctness
Verification, Usage Modeling and Test Planning, and Statistical Testing and
Certification Processes to help ensure failure-free performance in use.

3. Legacy Systems

Systems in a mature product line may require extensive application of the
Software Reengineering, Correctness Verification, Usage Modeling and Test
Planning, and Statistical Testing and Certification Processes to ensure that the
reused software achieves Cleanroom quality objectives.

4. Large, Complex Systems

Large-scale system developments often involve complex collections of hardware,
software, and human components. Such projects typically require extensive
systems engineering and analysis for project planning, requirements allocation,
system specification, and architecture definition prior to any software
development. The set of Cleanroom processes labeled "Analysis/Specification
Process Cycle" in Figure 1 can be repeatedly applied to establish and evolve the
system structure and project plans for subsequent software development. In
addition, large, complex systems usually require a final system certification step.

4.4 Cleanroom Teams

Cleanroom teams have management, specification, development, and
certification roles. Teams are typically composed of five to eight people. On
small projects, individuals may serve on several teams. On large projects, teams
of teams may be required, with hundreds of people involved. In this case, the
structure and evolution of the teams can be driven by the structure and
evolution of the system under development. Teams can also be organized as
integrated product teams, provided the Cleanroom roles for specification,
development, and certification are maintained.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model ■ 17

Whatever the team organization, the software project manager has overall
project responsibility. A chief specification engineer, chief design engineer, and
chief certification engineer lead the specification, development, and certification
teams, respectively.

The overarching objectives for a Cleanroom project are as follows.

• software project manager: management of Cleanroom processes to achieve
software product completion on schedule and within budget

• specification team: specification of required software function and usage in all
circumstances of use

• development team: development of fault-free software that implements
specified function

• certification team: certification of software fitness for use for specified
function and usage

Cleanroom teams interact with a variety of peer organizations depending on the
organizational and project context. System engineering and system test
organizations may be involved in embedded software projects; standards,
procurement, and quality assurance organizations may be involved in large
projects; configuration management, documentation, and organizational
software engineering process groups will likely be involved in any software
project; and so on.

The customer is part of the Cleanroom team as well. The term "customer" may
mean external institutional sponsor, internal organizational sponsor, end user,
or any other party that is appropriate for defining requirements and evaluating
the evolving system.

4.5 Cleanroom Process Definitions

As noted, the Cleanroom Reference Model is a high-level Cleanroom process
template that must be tailored for use by a specific organization or project. Each
process and work product in the Cleanroom Reference Model is intended to be
elaborated through implementation procedures that address specific
organizational or project environments and unique development requirements.
These implementation procedures are to be documented in the Cleanroom
Engineering Guide.

18 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

The 14 Cleanroom processes are defined below in the following augmented
ETVX (Entry, Task, Verification, Exit) format:

Objectives

The Objectives section defines the outcomes of effective process performance.

Participants

The Participants section defines the roles of the participants in the process. The
participants may include the performers of tasks, the reviewers of work products,
or others who receive information about the status or outcomes of the process.

Entry

The Entry section defines the entry criteria that must be satisfied for the process
to be initiated, and lists the work products that must be available as inputs to the
process.

Tasks

The Tasks section defines work to be carried out in performing the process. The
order of the tasks is generally, but not strictly, sequential. Some tasks may be
concurrent with other tasks.

Verification

The Verification section defines steps for verifying that the process has been
properly executed, and that the associated work products meet project objectives.

Measurement

The Measurement section defines Cleanroom measures for assessing (1) the
performance of the process and (2) the characteristics of the work products. The
measures given in the Measurement section are either characteristic of or
integral to Cleanroom software engineering. Many other measures not given in
the Measurement section may also be useful, or even required in a given project.

Exit

The Exit section defines the exit criteria that must be satisfied for the process to be
terminated. The exit criteria generally involve completion and verification of

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model ■ 19

work products, but may also be given in terms of quantitative or qualitative
conditions of work products.

Other Syntactical Elements

Boxed text appears in the process definitions to (1) explain Cleanroom terms and
concepts, (2) recommend specific implementation techniques, (3) provide
examples, and (4) point to further information. Accordingly, the boxes are
labeled Explanation, Recommendation, Example, or Reference.

Work product names are given in italics. The purpose and content of the work
products are described in Section 5.

Common Cleanroom Process Elements

The Cleanroom processes have a number of elements in common. These
common elements are defined in a single section named Common Cleanroom
Process Elements, to avoid repetition and achieve more compact definitions of
the Cleanroom processes. The Common Cleanroom Process Elements apply to
all of the Cleanroom processes.

20 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

Common Cleanroom Process Elements

Common Cleanroom Process
Elements
The common objectives, participants, entry criteria, tasks, verification,
measures, and exit criteria in Cleanroom processes are given here as common
Cleanroom process elements. That is, these elements should be treated as
part of every Cleanroom process. Rather than being restated in each
Cleanroom process, the common elements have been "factored out" and
stated once.

The people who are responsible for each of the Cleanroom management,
specification, development, and certification processes (i.e., the "process
owners") should regard the common elements to be included in their process
responsibilities.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model ■ 21

Common Cleanroom Process Elements

Common Objectives

Objective 1 Work products created or updated in the process are traceable
to the Entry work products from which they were derived.

Objective 2 Defects in work products created or updated in the process are
identified through peer review and are eliminated.

Common Participants

In addition to project staff, participants include management,
peer organization representatives, and customer
representatives as appropriate for review, information, or
agreement.

Common Entry

Entry 1 The Cleanroom Engineering Guide and the Soßware
Development Plan (developed in the Project Planning
Process), and the Project Record are available.

When the process is reentered for changes to work products,
the reentry is consistent with the Engineering Change Process
and the Configuration Management Plan.

Common Tasks

Task 1 Ensure that all participants understand process requirements
as documented in the Cleanroom Engineering Guide.

Task 2 Create work products in the formats defined in the
Cleanroom Engineering Guide.

Task 3 Make changes to work products in compliance with the
Engineering Change Process and the Configuration
Management Plan.

22 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

Task 4

Common Cleanroom Process Elements

Document project activity in the Project Record.

Document information that will not be recorded in other
work products in the Project Record. Specifically, document
process beginning and ending dates, staff assignments,
process review dates and data, measurements, and other key
events and decisions.

Common Verification

Verification 1

Verification 2

Review the status of the process with management, the
project team, peer groups, and the customer.

These verification activities include confirmation that the
process was performed as defined in the Cleanroom
Engineering Guide.

Review work products created or updated in the process with
the project team.

Work products are verified against properties defined for
them in the Cleanroom Engineering Guide. Work products
under review are verified to be fully traceable to the work
products from which they were derived.

EXPLANATION: Peer review

Peer review is a key to intellectual control of work by
Cleanroom teams. The work of an individual team member
is regarded as a draft until there is team consensus that the
work is correct and of acceptable quality.

Every Cleanroom work product is peer reviewed, yielding
substantial benefits. Differing interpretations of requirements
are uncovered, conventions are established, errors are
detected, opportunities for economy are identified,
understandability is tested, and expertise is shared. The
results benefit the project, the product, and the team
members alike.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model ■ 23

Common Cleanroom Process Elements

REFERENCE: CMM Peer Reviews and Defect Prevention KP As

If compliance with these KPAs is an organizational objective,
their specific requirements should be reviewed when this
verification step is tailored for organizational or project use.

Common Measurement

Measurement 1 Measure the process.

Measure process performance in terms such as deviations in
resource and schedule actuals from plans.

Measure the effectiveness of a review in terms of the
percentage of all defects that are found in the review. These
percentages are determined, of course, after execution testing.

EXPLANATION: Effectiveness of reviews

The earlier a product defect is discovered, the less costly it is
to fix. If most defects are found early in the development
cycle, a great deal of costly rework is avoided. Similarly, if
most defects are found late in the development cycle, costly
rework is incurred.

The distribution of total defects across all reviews is an
indication of the relative effectiveness of reviews. A more
precise measure is the distribution of defects across all
reviews in which they could have been found, i.e., the
distribution of requirements defects identified in
requirements and succeeding reviews; the distribution of
specification defects identified in specification and succeeding
reviews, etc.

Measurement 2 Measure the product.

Measure size and stability of work products that define the
software (i.e., the Software Requirements, the Function

24 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

Common Cleanroom Process Elements

Specification, Usage Specification, and Software Architecture,
the Usage Models, the Increment Design, and the Executable
System).

Measure the quality of work products that define the software
in terms of the percentage of execution failures that are traced
to defects in the work products. These percentages are
determined, of course, after execution testing.

EXPLANATION: Quality of work products

If an execution failure is traced to a defect in a work product,
the quality of that work product is suspect. The causes of all
execution failures should be traced to the work products in
which they originate. The resulting distribution of defects
reflects the relative quality of the work products.

Common Exit

Tasks and Verification activities have been completed, and
the Project Record has been updated.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model ■ 25

Project Planning Process

Project Planning Process
A Cleanroom management process

The purpose of the Project Planning Process is to 1) tailor the Cleanroom
Reference Model (or the organizational reference model) for the project, 2)
define and document plans for the Cleanroom project, and 3) review the
plans with the customer, the project team, and peer groups for agreement.

The work products of the Project Planning Process are the Cleanroom
Engineering Guide and the Software Development Plan. Both documents are
revised as necessary during the project to accommodate customer needs and
project performance.

The Cleanroom Engineering Guide defines a tailoring of the Cleanroom
processes to meet project-specific process requirements.

The Software Development Plan is the repository for project management plans,
including mission, organization, work products, schedules, resources,
measurements, reuse analysis, risk analysis, standards, training, and
configuration management. The Software Development Plan is used in the
Project Management Process for task initiation, performance tracking, and
quantitative process management.

The Cleanroom Engineering Guide and the Software Development Plan form the
basis for defined, repeatable, managed, and optimizing performance of
Cleanroom activities.

26 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

Project Planning Process

Objectives

Objective 1 Cleanroom software engineering processes are tailored for
the project and documented.

Objective 2 The software project plans are defined and documented.

Objective 3 The customer, the project team, and peer groups agree to the
Cleanroom processes and project plans.

Participants

Project software manager, chief specification engineer, chief
development engineer, chief certification engineer, peer
organizations, and the customer.

Entry

The process begins when one of the entry criteria is satisfied.

Entry 1 A new or revised Statement of Work and/or Software
Requirements exists for the software project.

Entry 2 The Software Development Plan and/or Cleanroom
Engineering Guide require revision or elaboration at the
beginning of a new increment or as necessary.

Entry work products are available.

Tasks

Task 1 Create the Cleanroom Engineering Guide.

Use the Cleanroom Software Engineering Reference Model
or the organizational Cleanroom Software Engineering

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model ■ 27

Project Planning Process

Reference Model, if any, as the basis for defining or revising
the project's Cleanroom Engineering Guide, including:

1. Project-specific tailoring and refinement of the Cleanroom
processes. Define and document clear process
implementation guidance for the Cleanroom project.

2. Identification and documentation of facilities, hardware,
and software environments and tools to support
Cleanroom processes, with guidelines for their use.

Task 2

REFERENCE: CMM Organizational Process Definition,
Integrated Software Management, Software Product
Engineering, and Software Quality Management KPAs

If compliance with these KPAs is an organizational objective,
their specific requirements should be reviewed when the
Cleanroom processes are tailored for organizational or project
use.

Create the Software Development Plan.

REFERENCE: CMM Software Project Planning KPA

If compliance with this KPA is an organizational objective, its
specific requirements should be reviewed when the Software
Development Plan is developed.

Use the Statement of Work and/or Software Requirements to
define or revise the Software Development Plan, including
the following plans:

1. Project Mission Plan: Define the overall mission, goals,
and objectives of the software product and the Cleanroom
development project.

2. Project Organization Plan: Define the structure,
responsibilities, and relationships of the Cleanroom
project organization. Identify points of contact in
customer and peer organizations.

28 Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

Project Planning Process

REFERENCE: CMM Intergroup Coordination KPA

If compliance with this KPA is an organizational
objective, its specific requirements should be reviewed
when the Project Organization Plan is developed.

3. Work Product Plan: Define the Cleanroom work products
and customer deliverables to be produced during the
project.

4. Schedule and Resource Plan: Define estimates for overall
schedules, milestones, and budgets. Define staffing,

system, and other resource requirements. These estimates
will be refined in the Increment Planning Process.

5. Measurement Plan: Define product and process measures
for managing the project, including goals for Cleanroom
software certification and standards for statistical process
control. Define the use of measures in project reviews
and decision making.

EXPLANATION: Quantitative management decisions

A quantitative basis for management decisions regarding
product quality and process control is a hallmark of
Cleanroom. The organizational data base of project
measures that accumulates over time becomes
increasingly useful in planning and management. A
historical baseline of product measures (e.g., size, stability,
and quality) and process measures (e.g., conformance to
plans and effectiveness of reviews) provides a basis for 1)
estimating schedules, budgets, and resources, 2) defining
process control standards for work in progress, and 3)
defining certification goals for increment and product
certification.

REFERENCE: CMM Quantitative Process Management KPA

If compliance with this KPA is an organizational
objective, its specific requirements should be reviewed
when the Measurement Plan is developed.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model ■ 29

Project Planning Process

6. Reuse Analysis Plan: Define methods for identifying and
evaluating opportunities to reuse existing assets and
create new reusable assets. Reusable assets include
domain models, reference architectures, software
specifications, designs, implementations, and usage
models. Define specific opportunities for reuse.

7. Risk Analysis Plan: Define methods for identifying and
managing risks throughout the project. Define specific
management and technical risks associated with the
project.

8. Standards Plan: Identify and define the application of
external standards that will be used in the project.

9. Training Plan: Identify project training requirements,
including training in the application domain,
development environments, and Cleanroom technology
and processes.

REFERENCE: CMM Training Program KPA

If compliance with this KPA is an organizational
objective, its specific requirements should be reviewed
when the Training Plan is developed.

10. Configuration Management Plan: Identify the work
products to be maintained under configuration control.
Define procedures for change management and
configuration control of the work products.

REFERENCE: CMM Software Configuration Management KPA

If compliance with this KPA is an organizational objective, its
specific requirements should be reviewed when the
Configuration Management Plan is developed.

30 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

Project Planning Process

Verification

Verification 1 Review the Cleanrootn Engineering Guide for agreement.

Review the Cleanroom Engineering Guide with the project
team and peer groups to obtain commitments to Cleanroom
processes and team performance objectives.

Review the Cleanroom Engineering Guide with the
customer; modify and re-review as necessary to obtain
concurrence.

Verification 2 Review the Software Development Plan for agreement.

Review the Software Development Plan with the project
team and peer groups to obtain commitments to project plans
and schedules.

Review the Software Development Plan with the customer;
modify and re-review as necessary to obtain concurrence.

Measurement

See Common Cleanroom Process Elements on page 21.

Exit

The process is complete when the exit criteria are satisfied.

The Software Development Plan and the Cleanroom
Engineering Guide have been completed and reviewed with
the project team, peer organizations, and the customer, and
commitments have been obtained.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model ■ 31

Project Management Process

Project Management Process
A Cleanroom management process

The purpose of the Project Management Process is to manage the Cleanroom
project to deliver the software on schedule and within budget. Management
responsibilities include managing interaction with the customer and peer
organizations; establishing and training Cleanroom teams; initiating,
tracking, and controlling planned Cleanroom processes; eliminating or
reducing risks; revising plans as necessary to accommodate changes and
actual project results; and continually improving Cleanroom team
performance.

Cleanroom management is guided by quantitative measurements of process
and product performance as defined in the Measurement Plan—in particular,
the measurements produced by statistical testing and certification of
successive increments throughout the project life cycle.

Overall project processes, schedules, and resource allocations are managed
according to the Schedule and Resource Plan. The Increment Construction Plan,
created in the Increment Planning Process, provides detailed schedules for
managing increment development and certification within the overall
schedules. The Risk Analysis Plan defines risks to be managed.

An important aspect of Cleanroom project management is establishing and
enforcing standards of performance for Cleanroom operations. The
Cleanroom development process is designed for defect prevention through
mathematically-based specification, design, and correctness verification.
Development teams are expected to produce fault-free software that
implements specified behavior. The Cleanroom testing process is designed
for scientific certification of software fitness for use through statistical testing.
Certification teams are expected to produce valid statistical estimates of
software quality, not attempt to test in quality.

32 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

Project Management Process

Objectives

Objective 1 The project plan is implemented using a tailored Cleanroom
process, and schedules, budgets, and quality objectives are
met.

Objective 2 The project is performed under statistical quality control.

Objective 3 The delivered software meets the customer's requirements
and is statistically certified to be fit for its intended use.

Participants

Project software manager, specification team, development
team, certification team, peer organizations, and the
customer.

Entry

The process begins when the entry criteria are satisfied.

The Software Development Plan and the Cleanroom
Engineering Guide have been completed, reviewed, and
agreed to by the project team, peer groups, and the customer.

All project work products are available for use in this process
as they are developed.

Tasks

Task 1 Manage customer interaction.

Establish and maintain communication with points of
contact in customer organizations. Maintain all information
received from the customer.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model ■ 33

Project Management Process

Conduct reviews with the customer on project status and
plans.

Establish procedures for customer evaluation of completed
software increments.

Task 2 Manage peer organization interaction.

Establish and maintain communication with points of
contact in peer organizations.

Conduct reviews with peer organizations on project status
and plans.

Task 3 Form, staff, and train the Cleanroom teams.

Create a Cleanroom organizational structure composed of
four functions:

1. Management team led by the project software manager
2. Specification team led by the chief specification engineer
3. Development team led by the chief development engineer
4. Certification team led by the chief certification engineer

Provide team training in the application domain,
development environment, and Cleanroom software
engineering as defined in the Training Plan.

Task 4 Initiate Cleanroom processes.

Initiate Cleanroom processes defined in the Cleanroom
Engineering Guide, as required by Software Development
Plan—in particular, the processes, schedules, and resource
allocations defined in the Schedule and Resource Plan and
the Increment Construction Plan. Document process
initiation in the Project Record.

Task 5 Monitor Cleanroom process performance and work products
through measurement and take corrective action as
necessary.

34 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

Project Management Process

Record measurements of process and product performance
over the life of the project as defined in the Measurement
Plan.

Use measurements to monitor performance with respect to
plans. Inspect work products to assess adherence to the
process. Measurements from the Correctness Verification and
Statistical Testing and Certification Processes are especially
important in assessing product quality and team
performance.

Address performance shortfalls or windfalls. Identify
schedule and quality deviations, and implement corrective
actions. Revise project plans as necessary through the Project
Planning, Increment Planning, Project Management, and
Performance Improvement Processes.

Maintain consistency among related work products produced
by the Cleanroom processes in accordance with the
Configuration Management Plan.

REFERENCE: CMM Software Project Tracking and Oversight
and Quantitative Process Management KPAs

If compliance with these KPAs is an organizational objective,
their specific requirements should be reviewed when this
task is tailored for organizational or project use.

Task 6

Task 7

Manage project risks.

Identify and manage risks according to the Risk Analysis
Plan. Use the Cleanroom incremental development and
certification process as a risk management strategy.

Manage Cleanroom team performance.

Manage team performance and implement improvements in
Cleanroom processes defined in the Performance
Improvement Plan.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model 35

Project Management Process

Verification

See Common Cleanroom Process Elements on page 21.

Measurement

Exit

See Common Cleanroom Process Elements on page 21.

The process is complete when the exit criteria are satisfied.

The Cleanroom software development project has been
completed, and the Project Record has been completed.

36 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

Performance Improvement Process

Performance Improvement Process
A Cleanroom management process

The purpose of the Performance Improvement Process is to 1) continually
evaluate and improve team performance in the application of Cleanroom and
other software technologies and processes and 2) to evaluate and introduce
appropriate new technologies and processes.

Frequent and objective evaluation of team performance is essential to achieve
continuous improvement. Causal analysis of deviations from plans can
provide early identification of risks. Causal analysis of faults found through
the Correctness Verification and the Statistical Testing and Certification
Processes can identify areas that require improvement through better process
definition, increased emphasis, and/or additional training.

Process and product evaluations in review, verification, testing, and
certification activities provide an objective basis for justifying and targeting
process improvements. Improvements can be introduced within a project at
specific milestones, such as initiation of successive increments, and across
projects through coordinated organizational process improvement.

New technologies and processes can be evaluated in pilot applications for
their impact on productivity and quality, and introduced in a systematic
manner if proven effective.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model ■ 37

Performance Improvement Process

Objectives

Objective 1 The performance of the Cleanroom team is continuously
improved.

Objective 2 New Cleanroom and other software technologies and
processes are evaluated and introduced as appropriate, and
produce improvement in process performance and product
quality.

Participants

Project software manager, specification team, development
team, certification team.

Entry

The process begins when one of the entry criteria is satisfied.

Entry 1 A process step, a software increment, or a work product has
been completed and a team review is scheduled.

Entry 2 New Cleanroom technologies and/or processes are to be
evaluated.

Entry 3 Shortfalls in Cleanroom process performance or work
product quality have been identified.

Supporting work products are available.

The Increment Verification Report, Statistical Testing Report,
Increment Certification Report, and Engineering Change Log,
if any, define measures of Cleanroom process performance
and software product quality.

New Cleanroom or other software technology and process
documentation, if any, may be evaluated.

38 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

Tasks

Performance Improvement Process

Taskl Evaluate Cleanroom team performance and develop
improvement plans.

Evaluate project performance with respect to the Software
Development Plan and apply trend and causal analysis to
deviations.

Apply causal analysis to faults found in the Correctness
Verification and Statistical Testing and Certification Processes
to identify process steps in which they were introduced and to
determine why they occurred.

Compare process and product measurements with historical
team performance to assess process control.

Develop plans to improve team performance, including
additional training, improved tools and procedures, and
revised Cleanroom processes, and document the plans in the
Performance Improvement Plan.

REFERENCE: CMM Process Change Management KPA

If compliance with this KPA is an organizational objective, its
specific requirements should be reviewed when this task is
tailored for organizational or project use.

Task 2 Evaluate new technologies and processes and develop
implementation plans.

Identify new Cleanroom and other software technologies and
processes, and evaluate their impact on current Cleanroom
processes. Conduct experiments in the project environment
to measure their effectiveness.

Develop plans for introduction of proven new technologies
and processes, and document them in the Performance
Improvement Plan.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model 39

Performance Improvement Process

Schedule new technology and process introductions for the
start of subsequent increments or subsequent projects, as
appropriate.

REFERENCE: CMIA Technology Change Management KPA

If compliance with this KPA is an organizational objective, its
specific requirements should be reviewed when this task is
tailored for organizational or project use.

Verification

See Common Cleanroom Process Elements on page 21.

Measurement

Measurement 1 Measure performance improvement.

Assess the effect of process and technology changes by
examining trends in measures defined in the Measurement
Plan across successive increments.

Exit

The process is complete when the exit criteria are satisfied.

The Performance Improvement Plan has been applied and
the recommendations have been implemented. Any
changes, such as revisions to the Software Development Plan
or Cleanroom Engineering Guide, have been completed.

40 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

Engineering Change Process

Engineering Change Process
A Cleanroom management process

The purpose of the Engineering Change Process is to plan and perform
additions, changes, and corrections to work products in a manner that
preserves correctness and is consistent with the Configuration Management
Plan.

Proposed changes to work products are documented in the Engineering
Change Log. The status of the changes (e.g., proposed, approved, rejected,
scheduled, in progress, completed) is updated throughout the process.

Changes are made with full engineering rigor and discipline using the
Cleanroom processes. The highest level of specification or design affected by
a change is identified as the starting point for any respecification, redesign,
reverification, recertification, and any other revision activity.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model ■ 41

Engineering Change Process

Objectives

Objective 1 Additions and changes to work products occur in a manner
that preserves correctness and is consistent with the
Configuration Management Plan.

Participants

Entry

Software project manager, and specification team and/or
development team and/or certification team.

The process begins when one of the entry criteria is satisfied.

Entry 1 An Increment Verification Report, Statistical Testing Report,
or report from field use identifies software faults or failures
that require correction.

Entry 2 New requirements or insights require engineering changes to
be made to work products.

Entry work products and these work products are available.

The Software Development Plan, Increment Construction
Plan, and Reengineering Plan may be affected by engineering
change activity.

Tasks

Task 1 Document proposed engineering changes in the Engineering
Change Log.

Task 2 Evaluate the impact of proposed engineering changes.

42 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

Engineering Change Process

Analyze the scope and impact of proposed changes on project
work products, and approve or reject them based on the
analysis.

Task 3 Identify the Cleanroom processes required to perform the
engineering changes.

Define the Cleanroom process sequencing and scheduling
required to perform approved engineering changes, and if
necessary, revise the Software Development Plan, Increment
Construction Plan, and/or Reengineering Plan.

Task 4 Apply tne Cleanroom processes to perform the engineering
changes.

Apply Cleanroom processes to incorporate the engineering
changes at the highest level of specification affected,
reengineer subsequent levels of decomposition, and reverify
all affected work products for correctness. Maintain the
correctness and integrity of all affected work products as the
engineering changes are made, and satisfy the requirements
of the Configuration Management Plan.

Verification

Verification 1 Confirm the consistency of engineering change decisions
with the Configuration Management Plan.

Measurement

Measurement 1 Use measurements from other Cleanroom processes.

Use measurements defined for each Cleanroom process
initiated through the Engineering Change Process.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model ■ 43

Engineering Change Process

Exit

The process is complete when the exit criteria is satisfied.

The required engineering changes have been completed, the
necessary work products have been revised, and the
Engineering Change Log has been updated.

44 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

Requirements Analysis Process

Requirements Analysis Process
A Cleanroom specification process

The purpose of the Requirements Analysis Process is to 1) define
requirements for the software product, including function, usage,
environment, and performance, and 2) to obtain agreement with the customer
on the requirements as the basis for function and usage specification. The
specification team creates the Software Requirements document as the
repository of all requirements information. Elicitation and analysis of
requirements is carried out in close cooperation with the customer and peer
engineering organizations, and the requirements are typically documented in
user terms.

Requirements analysis may identify opportunities to simplify the customer's
initial product concept, and to reveal requirements that the customer has not
addressed. Early simplification and clarification of requirements can result
in schedule and resource savings throughout the development process.

The Software Requirements are the customer's requirements; they are the basis
for customer acceptance of the product. The Soßware Requirements are the
principal input to the Function Specification and Usage Specification
Processes, where they are elaborated into the mathematically complete and
consistent form essential to intellectual control over development and
certification. These processes in turn produce the Function Specification and
Usage Specification, which serve as the developer's technical specifications for
the software product.

Requirements are reconfirmed or clarified throughout the incremental
development and certification process. The customer executes completed
increments and provides feedback on the evolving system.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model ■ 45

Requirements Analysis Process

Objectives

Objective 1

Objective 2

Objective 3

Software requirements, including function, usage,
environment, and performance are clearly stated, internally
consistent, technically feasible, and testable.

The customer agrees with the software requirements as the
basis for software specification.

The software requirements are reconfirmed or clarified at the
completion of software increments through customer
evaluation.

REFERENCE: CMM Requirements Management KPA

If compliance with this KPA is an organizational objective, its
specific requirements should be reviewed when the
Requirements Analysis Process is tailored for organizational
or project use.

Participants

Specification team and the customer.

Entry

Entry 1

Entry 2

Entry 3

The process begins when one of the entry criteria is satisfied.

The Statement of Work or other initial artifact, such as a
statement of allocated system requirements, is available.

Changes, including additions and corrections, to the Software
Requirements are proposed.

A completed increment is ready for customer execution and
evaluation.

46 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

Requirements Analysis Process

Tasks

Entry work products and these supporting work products are
available.

The Engineering Change Log and the Increment Evaluation
Report, if any, contain customer feedback from increment
execution and may identify proposed changes to
requirements.

Taskl Define the software requirements.

Understand and analyze the Statement of Work, the
customer's environment, and the context and mission of the
product to be developed.

Define requirements, including software function and usage,
hardware and software configurations and environments,
interfaces, operational constraints, dependencies, and goals
for reliability, capacity, and performance.

EXPLANATION: Sources of requirements

Requirements come from many different sources depending
on the nature of the product.
• Software that is part of an embedded system or larger

software system will be defined on the basis of allocated
requirements from the system of which it is a part.

• A product that is part of a product line may inherit
requirements related to architecture, interfaces, standard
components, etc.

• Marketing, manufacturing, distribution, and other peer
organizations may be a source of requirements.

• Industry standards, regulatory standards, export standards,
and other commercial or contractual standards can
influence requirements.

All relevant sources of requirements should be identified for
the system under development.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model 47

Requirements Analysis Process

Task 2

EXPLANATION: Prototyping

If the requirements definition is insufficient for software
specification, initial software increments can be specified and
developed as prototypes to obtain user feedback for
establishing the requirements.

Simplify requirements and investigate alternatives to
improve usability and reduce development and certification
effort.

Document requirements and associated assumptions in the
Software Requirements.

Upon completion of each increment, reconfirm or clarify
requirements through customer evaluation of the executable
system.

Monitor customer execution and evaluation of completed
software increments to confirm existing Software
Requirements or identify proposed changes.

Verification

Verification 2

Verification 1 Review the evolving Soßware Requirements work product.

Conduct frequent specification team reviews of the evolving
Software Requirements for clarity, consistency, feasibility, and
testability. Make simplification of requirements an explicit
objective.

Validate the Software Requirements work product with the
customer and peer organizations.

Review the Software Requirements with the customer and
affected peer organizations for agreement on the basis for
software specification.

48 Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

Requirements Analysis Process

Measurement

Exit

See Common Cleanroom Process Elements on page 21.

The process is complete when the exit criteria are satisfied.

The new or changed Software Requirements are complete
and verified, and approved by the customer as the basis for
further development.

EXPLANATION: Formal baselining of requirements

It is often the case that requirements cannot be "baselined"
and established as the basis for acceptance of the product by
the customer until well into the Function Specification,
Usage Specification, and Architecture Specification processes.
The Requirements Analysis Process and the aforementioned
processes are often concurrent—not sequential—processes.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model ■ 49

Function Specification Process

Function Specification Process
A Cleanroom specification process

The purpose of the Function Specification Process is to 1) specify the complete
functional behavior of the software in all possible circumstances of use and 2)
obtain agreement with the customer on the specified function as the basis for
software development and certification.

The specification team creates the Function Specification document to satisfy
the software requirements. It expresses the requirements in a mathematically
precise, complete, and consistent form. The required behavior of the software
for every user scenario, however likely or unlikely to occur, is defined in the
specification. The specification is an unambiguous definition of the external
behavior of the software. No invention of external behavior should be
required in subsequent software development.

The Function Specification is based on the Software Requirements. Once the
specification has been completed and validated, it becomes the definitive
statement of functional behavior for the software. The specification defines
the capabilities to be created through incremental software development. It
also serves as the basis for usage specification and usage model development
in incremental software certification.

For large systems, a strategy of incremental specification is usually necessary.
In this approach, software increments are iteratively specified, developed,
and certified. This permits user feedback on observed increment behavior in
execution, and can help to elicit requirements that may have proven difficult
to define. The Function Specification Process is ongoing. Whenever the
evolving Function Specification is sufficient to support increment planning and
development of an increment, that development can be initiated.

50 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

Function Specification Process

Objectives

Objective 1

Objective 2

Objective 3

The required behavior of the software in all possible
circumstances of use is defined and documented.

The function specification is complete, consistent, correct,
and traceable to the software requirements.

The customer agrees with the function specification as the
basis for software development and certification.

Participants

Entry

Specification team and the customer.

Entry 1

Entry 2

The process begins when one of the entry criteria is satisfied.

The Software Requirements have been partially or fully
completed.

EXPLANATION: Incremental function specification

All software requirements must eventually be defined to
permit complete function specification. Often, all
requirements are not fully understood at the outset, and a
strategy of incremental function specification based on partial
requirements definition may be necessary.

In large-scale developments, incremental function
specification is often a desirable strategy for pacing
development, maintaining intellectual control, and eliciting
customer feedback.

The Function Specification requires revision for changes to
the Software Requirements, or for changes from increment
specification, development, or certification.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model 51

Function Specific ''on Process

Entry work products and these supporting work products are
available.

The Engineering Change Log describes proposed changes. The
Usage Specification, if any, is used as a check on the
completeness and consistency of the Function Specification.

Tasks

Taskl

Task 2

Define the format and notation of the Function Specification.

EXAMPLE: Function Specification format

The mathematical definition of a black box specification
prescribes certain elements whose format must be specified.
For example, a black box specification can be formatted as
tables (with columns for current stimulus, conditions on
stimulus history, and responses), enumerations of input
sequences and responses, disjoint conditional rules, or other
formalisms appropriate to the application. The notation
definition should include project conventions for naming
and typing.

Define all software boundaries and stimulus/response
interfaces with hardware, other software, and human users.

Specify stimuli from hardware devices and associated
responses and protocols.

Specify stimuli from external software and associated
responses, including formats of files and messages.

Specify stimuli from user interfaces and associated responses,
including details of presentation and interaction.

RECOMMENDATION; Specification of human user interfaces

The details of human user interfaces should be established
during function specification, not deferred for completion

52 ■ Cleanrooi oftware Engineering Reference Model CMU/SEI-96-TR-022

Function Specification Process

during development. The Function Specification defines the
complete external behavior of the software, which is closely
coupled to user interfaces.

Task 3

Document the software boundaries and external stimuli and
responses in the Function Specification.

Specify the required external behavior of the software in the
black box function form of stimulus history mappings to
corresponding responses.

Specify the required external behavior of the software in all
possible circumstances of use.

EXPLANATION: "All possible circumstances of use"

The Function Specification defines the required behavior of
the software for all usage, including correct and incorrect,
frequent and infrequent, and nominal and stress conditions.
Responses for all possible stimulus histories should be
specified.

EXPLANATION: Mathematical function

"Function" refers to a mathematical function. A
mathematical function defines a mapping from a domain to
a range. In a black box specification, the domain is the set of
all possible sequences of inputs (all stimulus histories), and
the range is the set of all correct responses. A mathematically
"complete" specification is one in which all possible stimulus
histories have been mapped to their corresponding
responses. A mathematically "consistent" specification is one
in which no history has been mapped to more than one
response or one set of responses. A "correct" specification is
one in which the domain, range, and mapping have been
properly specified in the judgment of domain experts.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model 53

Function Specification Process

REFERENCE: Software specification based on mathematical
function theory

[Mills 86], [Mills 87], [Mills 88] _^

RECOMMENDATION: Prudent exceptions to black box
specif ice, ;n

The black box specification has a state- and procedure-free
form that is extremely useful for validating requirements and
driving incremental development and certification. In some
cases, however, state box and even clear box specifications can
be considered when they are more natural alternatives. Black
box specifications are generally best, and well worth the effort
to develop.

Use abstractions such as specification functions in the black
box specification to maximize understandability, limit
complexity, and maintain intellectual control.

EXPLANATION: Specification functions

"Specification functions" are a common form of abstraction
used in scaling up black box specifications for large systems.
Specification functions define conditions or operations that
are used to simplify function mappings. They appear in the
mappings as named placeholders. For example, in a
specification for a database, a specification function named
"delete-ok" operating on stimulus history might define
conditions for which a "delete" stimulus should produce a
deletion, namely, that the record to be deleted had been added
somewhere in the history of use and not subsequently
deleted.

Simplify external software behavior wherever possible to
improve usability and reduce development and certification
effort.

Document the black box mapping of stimulus histories to
responses, and associated assumptions, in the Function
Specification.

54 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

Function Specification Process

Verification

Verification 1

Verification 2

Verify the completeness, consistency, correctness, and clarity
of the evolving Function Specification work product in
frequent team reviews.

Verify the completed Function Specification work product
with the customer and the project team.

Review the Function Specification with the customer, the
development and certification teams, and affected peer
groups for agreement on the basis for incremental
development and certification.

Measurement

Exit

See Common Cleanroom Process Elements on page 21.

The process is complete when the exit criteria are satisfied.

The Function Specification has been completed, verified
against Software Requirements, and agreed to by the
customer as the basis for software development.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model 55

Usage Specification Process

Usage Specification Process
A Cleanroom specification process

The purpose of the Usage Specification Process is to 1) identify and classify
software users, usage scenarios, and environments of use, 2) establish and
analyze the highest level structure and probability distribution for software
usage models, and 3) obtain agreement with the customer on the specified
usage as the basis for software certification.

The specification team creates the Usage Specification based on the Software
Requirements and the evolving Function Specification. The information in the
Usage Specification defines the scope of the testing effort and serves as the
basis for incremental usage model development. It also assists in completing
and validating the Function Specification.

Analysis of high-level usage models provides early guidance for allocation of
development and testing resources. The analysis can provide estimates of
relative long run usage of specified software functions, which can help
prioritize development activities. It can also help estimate testing resource
and schedule requirements. Usage model analysis can be carried out prior to
software development, before resources are committed to increment
development and certification. This analysis is an effective management tool
for reducing the risk of inaccurate resource and schedule estimates.

56 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

Usage Specification Process

Objectives

Objective 1 The users, usage scenarios, and usage environments of the
software are defined and documented to clarify the
specification, inform development priorities, and provide a
basis for initial test planning.

Objective 2 The customer agrees with the usage specification as the basis
for usage model development and software certification.

Participants

Entry

Entry 1

Entry 2

Specification team and the customer.

The process begins when one of the entry criteria is satisfied.

The Software Requirements and the Function Specification
have been partially or fully completed.

EXPLANATION: Incremental usage specification

All software requirements and function specifications must
eventually be defined to permit complete usage specification.
Often, all requirements are not fully understood at the

outset, and a strategy of incremental usage specification based
on partial requirements definition may be necessary. In
large-scale developments, incremental usage specification is
often a desirable strategy for pacing development,
maintaining intellectual control, and eliciting customer
feedback.

The Usage Specification requires revision for changes to the
Software Requirements or Function Specification, or for
changes from increment specification, development, or
certification.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model ■ 57

Usage Specification Process

Tasks

Taskl

Entry work products and these supporting work products are
available.

The Engineering Change Log describes proposed changes.

Define the format and notation of the Usage Specification.

The Usage Specification is often represented as a high-level
Markov chain. Naming and documentation conventions are
established for encoding usage information as elements of
the chain.

Task 2

EXPLANATION: Markov chain

Software use is a stochastic process that can be described as a
Markov chain. A Markov chain can be represented as a
directed graph, where the nodes are states of use and the arcs
are stimuli that cause transitions between states.

In the Usage Modeling and Test Planning Process, the high-
level Usage Specification is refined to produce detailed
Markov chain Usage Models. Additional explanation of
Markov chains is given in that process.

Specify the expected usage of the software through
progressive stratification of usage characteristics.

EXPLANATION: Stratification of usage characteristics

Variation in usage can be described as a hierarchy of
progressively narrower categories of usage. A heterogeneous
user population, for example, may be subdivided into a set of
more homogeneous user classes. This "stratification of
usage" results in a better understanding of software usage
requirements and provides a high-level basis for test
planning.

58 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

Usage Specification Process

Identify and classify all hardware, software, and human users
of the software.

Identify the expected proportion of each class of user within
the set of expected users.

EXAMPLE: User classifications

Hardware user classifications include sensors, actuators, and
other peripheral devices. Software user classifications include
operating systems, databases, and other controlling or
supporting software. Human user classifications include job
type, access privileges, and experience level.

EXPLANATION: Contribution of usage specification to function
specification

Identification of users, usage scenarios, and environments of
use in the Usage Specification Process contributes to the
completeness and correctness of function definition in the
Function Specification Process.

The users of the software are the sources of stimuli and the
targets of responses. The completeness of the set of identified
users is a necessary condition for the correctness of the
domain defined in the Function Specification. The principle
of "transaction closure" in Cleanroom black box specification
refers to the requirement that all possible uses by all possible
users be identified.

For each class of user, identify and classify all scenarios of use,
including starting and ending events.

Identify the expected proportion of each class of scenarios
within the set of expected scenarios.

EXAMPLE: Use classifications

Usage scenarios are defined by considering main and
supporting user functions, routine and non-routine use, safe

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model ■ 59

Usage Specification Process

and hazardous use, and other dimensions that stratify and
organize usage patterns.

Since statistical testing is based on random sampling of the
population of possible uses, the definition of a "use" is critical
to the validity of the testing process. A "use" begins and ends
with predefined events that are appropriate to the
application, for example, invocation to termination,
switchhook up to switchhook down, power up to power
down, main menu to main menu, transaction start to
transaction end, etc.

For each class of user and class of use, identify and classify
expected hardware and software environments for the
software system.

Identify the expected proportion of each class of environment
within the set of expected environments.

EXAMPLE: Environment classifications

Usage environments can be classified in terms of
characteristics such as computer and network configuration,
capacity, and performance; system and support software
capabilities and resource requirements; data rates and
volumes; and support for concurrency.

EXPLANATION: Operational use as the context for certification

Cleanroom testing is performed as a statistical experiment in
which tested use of the software should reflect operational
use to the greatest extent possible. Careful characterization of
operational environments permits their accurate simulation
in testing, which in turn permits valid estimates of fitness
for use of the software in the operational environments.

REFERENCE: Usage specification

[Walton 95a]

60 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

Usage Specification Process

Task 3

Document the results in the Usage Specification.

Represent usage information as high-level Markov chains.
Analyze the models, and make recommendations based on
analysis of usage model statistics.

EXPLANATION: Relationship of usage specification to usage
modeling

Usage specification is a system-level activity; detailed usage
modeling parallels lower-level development activity. The
high-level Markov chain developed during the Usage
Specification Process is the top level of the usage model(s)
developed during the Usage Modeling and Test Planning
Process.

Identify any areas where the functions defined in the
Function Specification result in excessive complexity and cost
in usage model development. Make recommendations for
possible simplification.

Evaluate software functions in terms of probability of use.
Make recommendations on development priorities.

Analyze usage statistics to estimate resources and schedules
required to achieve certification goals.

Verification

Verification 1

Verification 2

Verify the evolving Usage Specification work product in
specification team reviews.

Conduct frequent specification team reviews of the evolving
Usage Specification for completeness, consistency,
correctness, and clarity.

Verify the completed Usage Specification work product with
the customer and the project team.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model 61

Usage Specification Process

Review the Usage Specification with the customer, the
certification team, and affected peer groups for agreement on
the basis for usage model development and software
certification.

Measurement

Measurement 1

Exit

Apply standard calculations to Markov chain usage models to
derive high-level operational profiles of the software.

EXPLANATION: Usage model calculations

Standard calculations on Markov chain usage models
provide estimates of long-term software usage behavior. The
calculations may be interpreted to identify patterns of use,
usage features, probabilities of particular usage events, and
insights relevant to both development and test planning.
Further discussion of Markov usage model analysis is given
in the Usage Modeling and Test Planning Process.

The process is complete when the exit criteria are satisfied.

The Usage Specification has been completed, verified, and
agreed to by the customer as the basis for detailed usage
modeling and test planning.

62 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

Architecture Specification Process

Architecture Specification Process
A Cleanroom specification process

The purpose of the Architecture Specification Process is to define the
conceptual model, the structural organization, and the execution
characteristics of the software. Architecture definition is a multi-level activity
that spans the life cycle. Architecture may be inherited from a domain or
product line, evolve within the constraints of the system of which it is a part,
or wholly originate in the software project.

The Cleanroom aspect of architecture specification is in decomposition of the
history-based black box Function Specification into state-based state box and
procedure-based clear box descriptions. This high-level box structure of the
software identifies and connects principal components, including their state
encapsulations and operations. It is the beginning of a referentially
transparent decomposition of the Function Specification into a box structure
hierarchy, and will be used during increment development. The architecture
may take a variety of forms, including functional, object-based, etc.

Key dimensions of architecture are 1) conceptual architecture expressed in
terms of major software components and their relationships, 2) module
architecture expressed terms of layers of functional decomposition, and 3)
execution architecture expressed in terms of dynamic software operation
[Soni 95]. The architecture is a vehicle for incorporating existing reference
models, components, protocols, standards, and software design strategies.
Architecture specification spans the development life cycle.

The Software Architecture is a principal input to the Increment Planning and
Increment Design Processes.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model ■ 63

Architecture Specification Process

Objectives

Objective 1 The architectural strategy leverages existing assets and
supports reuse plans.

Objective 2 The architectural structure of the software is defined as the
complete behavior and interaction of its principal
components.

Objective 3 The customer agrees with the software architecture as the
basis for software development.

Participants

Specification team, the development team, and the customer.

Entry

The process begins when one of the entry criteria is satisfied.

Entry 1 The Software Requirements and the Function Specification
are partially or fully completed.

Entry 2 The Software Architecture requires revision for changes
to the Software Requirements or Function Specification, or
for changes from increment specification, development, or
certification.

Entry work products and these supporting work products are
available.

The Engineering Change Log describes proposed changes.
The Usage Specification is used to clarify requirements and
constraints on the software architecture.

The Reengineered Software, if any, is used to define use of
reengineered components in the architecture.

64 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

Architecture Specification Process

Tasks

Taskl

Task 2

Task 3

Identify architectural assets.

Identify and analyze architectural assets applicable to the
software, including existing domain models, reference
architectures, components, communication protocols,
standards, and design strategies and conventions.

Document the asset analysis in the Software Architecture.

Define a strategy for the software architecture.

Define a strategy for the architecture based on the Software
Requirements, Function Specification, the analysis of
architectural assets, and requirements derived from higher-
level system or subsystem design.

Document the strategy in the Software Architecture.

Specify the top-level box structure of the software
architecture.

Decompose the history-based black box specification of
required external behavior defined in the Function
Specification into top-level state-based state box and
procedure-based clear box forms based on the architecture
strategy.

For the state box, invent principal state elements and
operations required to achieve specified black box behavior.

For the clear box, invent procedures for operations on state
elements required to achieve specified state box behavior.
Within the clear box, invent and connect principal software
components, usually defined as black boxes, whose
subsequent state box decompositions will encapsulate state at
the next level.

Continue the decomposition until the architecture is fully
elaborated.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model 65

Architecture Specification Process

Task 4

The completed software architecture represents a hierarchy of
box uses, wherein every use of a box is explicitly represented
in the hierarchy.

Document the architecture in the Software Architecture.

Analyze and validate the software architecture.

Perform simulations and analysis as necessary to ensure that
performance, reliability, usability, and other software
requirements can be met by the architecture.

Document the analysis in the Software Architecture.

Verification

Verification 1

Verification 2

Verify the evolving Software Architecture work product in
team reviews.

Conduct frequent team reviews of the evolving Software
Architecture to ensure that it meets requirements.

Use the Correctness Verification Process to verify that the
representation of the Software Architecture in top-level box
structure form is complete, consistent, and correct.

Verify the completed Soßware Architecture work product
with the customer and the project team.

Review the Software Architecture with the customer, the
development and certification teams, and affected peer
groups for agreement on the basis for incremental
development and certification.

Measurement

See Common Cleanroom Process Elements on page 21.

66 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

Architecture Specification Process

Exit

The process is complete when the exit criteria are satisfied.

The Software Architecture has been completed, verified, and
agreed to by the customer.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model ■ 67

Increment Planning Process

Increment PT nnim Process
A Cleanroom specification process

The purpose of the Increment Planning Process is to 1) allocate customer
requirements defined in the Function Specification to a series of software
increments that satisfy the Software Architecture, 2) define schedule and
resource allocations for increment development and certification, and 3)
obtain agreement with the customer on the increment plan.

The Increment Construction Plan is created by the specification team for use by
management to assign tasks, track progress, and monitor product quality
and process control in the Project Management Process. It is revised as
necessary to incorporate changes or accommodate actual project
performance. In the incremental process, a software system grows from
initial to final form through a series of increm nts that implement user
function, execute in the system environment, und accumulate into the final
system. The first increment is an "end-to-end" (i.e., initial user state to final
user state) executable subset of the functional behavior on which later
increments can build. When the final increment is in place, the system is
complete. By providing a series of accumulating subsets of the software that
grow in capability, the incremental process reduces risk and permits early
and continual user evaluation and feedback. If the customer prefers delivery
of the final system only, incremental development can still be used by the
development organization for management control, risk mitigation, and to
support development needs such as hardware-software co-design.

Incremental development and certification avoids the risks associated with a
separate integration step late in a project life cycle. Increments are typically
developed in t • down fashion, often with concurrent engineering of
increments. E h increment is a decomposition of functions and interfaces
specified in prior increments. This approach permits continual testing and
quality assessment as the software evolves into final form.

68 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

Increment Planning Process

Objectives

Objective 1 The incremental development and certification plan
supports intellectual control of the work, statistical quality
control of the process, and risk management of the overall
project.

Objective 2 The increment plan ensures ongoing clarification of
requirements through user execution and evaluation of
increments.

Objective 3 The customer agrees with the increment plan as the basis for
software development and certification.

Participants

Specification team, chief development engineer, chief
certification engineer, project software manager, and the
customer.

Entry

The process begins when one of the entry criteria is satisfied.

Entry 1 The Software Requirements, Function Specification, Usage
Specification, Software Architecture, Reuse Analysis Plan,
Risk Analysis Plan, and Schedule and Resource Plan are
partially or fully completed. These work products are the
basis for developing the Increment Construction Plan, as well
as a source of revisions to it.

Entry 2 The Increment Construction Plan requires revision for
changes from development or certification activity or as a
result of new or changed requirements.

Entry work products are available.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model ■ 69

Increment Planning Process

Tasks

Taskl Partition software functions into a series of increments for
development and certification.

Define the functional content of a series of software
increments that implement user function, execute in the
system environment, and accumulate into the final system.

EXPLANATION: "Accumulate into the final system"

Cleanroom increments accumulate in a top down fashion.
The Function Specification and Software Architecture
provide the high-level structure for a series of increments
that grow from the structure, each increment a further
decomposition of the previous one. From the beginning,
embedded specifications with executable "stubs" are used as
placeholders for functions planned for later increments. In
this way, all testing occurs in a system environment;
traditional integration testing is unnecessary.

Use the Software Requirements to identify software
requirements or system engineering factors that may
influence the definition of increment content.

Use the Function Specification and the Software Architecture
to identify required software functions and their dependency
relationships as a basis for defining increment content.

Use the Reuse Analysis Plan to identify reused components
and allocate them to appropriate increments.

Use the Risk Analysis Plan to identify risks that influence
increment content. Plan increment content to avoid or
manage risks, with emphasis on addressing risks early in the
project.

Use the Usage Specification to define increment content in
consideration of usage probabilities, specifically, to

70 Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

Increment Planning Process

incorporate functions with high usage probabilities into early
increments.

Identify special components, such as complex algorithms
requiring extensive analysis, for independent development
and certification prior to incorporation into the accumulating
increments. These components can be incorporated as
reusable assets in the overall increment plan.

Document the required functional content of the increments
in the Increment Construction Plan.

Task 2 Refine the Schedule and Resource Plan by allocating
schedules and resources to increment development and
certification.

Within the overall constraints of the Schedule and Resource
Plan, allocate development and certification schedules and
resources for each increment.

Provide for overlapping or parallel development of
increments as necessary to meet schedules based on
availability of development resources.

Define schedule points for measurement of software quality
and process control, and for customer evaluation of
increments.
Document schedule and resource allocations in the
Increment Construction Plan.

REFERENCE: Increment planning

[Trammell 96]

Verification

Verification 1 Review the Increment Construction Plan with the customer,
the development and certification teams, and affected peer
groups for agreement on the basis for increment
development and certification.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model ■ 71

Increment Planning Process

Measurement

See Common Cleanroom Process Elements on page 21.

Exit

The process is complete when the exit criteria is satisfied.

The Increment Construction Plan has been completed,
verified, and agreed to by the customer as the plan for
software development and certification.

72 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

Software Reengineering Process

Software Reengineering Process
A Cleanroom development process

The purpose of the Software Reengineering Process is to prepare reused
software for incorporation into the software product. Reused software can
originate in Cleanroom or non-Cleanroom environments, and can include
commercial products, customer-furnished software, and components from
previous software developments. Software may be reused as is, reused
through "firewalls" that shield Cleanroom software, or reused after
reengineering.

Reused software must satisfy two principal Cleanroom requirements. First,
the functional semantics and interface syntax of reused software must be
understood and documented, to maintain intellectual control and avoid
unforeseen failures in execution. If specification and design documentation
for reused software is incomplete, its functional semantics can be recovered
through function abstraction and correctness verification. The completeness
and correctness of specifications for reused software must satisfy project
specification standards.

Second, the fitness for use of reused software must be either known or
determined, in order to achieve the project's certification goals. Usage
models can be developed for reused software, and its fitness for use
determined through statistical testing. The reliability of reused software
must satisfy project certification goals.

The results of the Software Reengineering Process are documented in the
Reengineering Plan and Reengineered Software.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model ■ 73

Software Reengineering Process

Objectives

Objective 1 Reengineered software satisfies requirements for the
software product in which it is used.

Objective 2 Reengineering activity enables intellectual control over the
reengineered software.

Objective 3 Reengineered software is certified to be fit for its intended
use as necessary to meet certification goals for the software
product in which it is used.

Participants

Development team, specification team, and certification
team.

Entry

The process begins when one of the entry criteria is satisfied.

Entry 1 Candidate reusable assets identified in the Reuse Analysis
Plan are to be evaluated and possibly reengineered for use in
the software product.

Entry 2 The Reengineering Plan and /or the Reengineered Software
require revision for changes from specification,
development, or certification activities.

Entry work products and these supporting work products are
available.

Reused software and its supporting documentation are used
as the basis for creating the Reengineered Software.

The Engineering Change Log describes proposed changes.
The Software Requirements, Function Specification, Usage
Specification, Software Architecture, and Increment

74 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

Software Reengineering Process

Construction Plan are used to define requirements for
reengineering reused software.

Tasks

Taskl

Task 2

Analyze candidate reused software and its documentation to
develop a reengineering plan.

Analyze specifications, designs, and implementations of
reused software to evaluate the completeness and
correctness of documentation of its functional semantics,
and the extent of reeengineering necessary to satisfy software
product requirements.

Analyze the usage models, test plans, test procedures, test
results, and actual usage of reused software to evaluate the
basis for its reliability estimates.

Conduct a cost/benefit analysis with respect to project
certification goals and future software maintenance
responsibilities to determine appropriate resource
allocations to reengineering activities.

If necessary, develop a plan for reengineering reused
software to satisfy functional requirements, recover
functional semantics, and/or assess fitness for use.

Define and document reengineering tasks, schedules, and
resources in the Reengineering Plan.

Recover the functional semantics of reused software using
function abstraction techniques.

If reused software implementations are not structured,
transform them into structured form using program
structuring techniques to permit function abstraction.

Carry out stepwise abstraction of structured
implementations as necessary and document embedded
intended functions. Continue abstraction until

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model 75

Software Reengineering Process

specifications of external behavior in all possible
circumstances of use have been defined.

EXAMPLE: Recovering a specification through function
abstraction

Consider the following miniature program, which has no
intended functions.

do
if y <0
then t := -y
else t := y
endif;
ifx>t
then z := x
else z := t
endif

enddo

The first ifthenelse can be read and abstracted to [t := abs(y)],
and the second to [z := max(x, t)], to produce an intermediate
level of design:

do
[t:=abs(y)];
[z := max(x, t)]

enddo

This sequence program can in turn be abstracted to obtain
the overall specification of the program:

do
[z := max(x, abs(y))]

enddo

The abstractions can be recorded in the program text to
document intermediate and final specifications.

Document the functional semantics of reused software in
Reengineered Software.

76 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

Software Reengineering Process

Task 3

Task 4

Reengineer reused software to meet software product
requirements.

Respecify, redesign, and reimplement reused software as
necessary to meet requirements, using the Function
Specification, Increment Design, and Correctness
Verification Processes.

Document the reengineering of reused software in
Reengineered Software.

Recover the functional semantics of reused software using
experimental execution.

If the source code of reused software is not available, conduct
experimental executions as necessary to derive an
understanding of its functional semantics.

RECOMMENDATION: Use of COTS or APIs

If neither specifications nor source code are available,
execution experiments can be used to understand the
semantics of the software. The use of the COTS, API, or
otherwise "sealed" software in the product under
development should be restricted to functions that are well
understood.

Task 5

Document the functional semantics of reused software in
Reengineered Software.

Certify the fitness for use of reused software.

Create usage models and conduct statistical testing as
necessary to certify the fitness for use of reused software with
respect to project certification goals. Use the Usage Modeling
and Test Planning Process and the Statistical Testing and
Certification Process.

Document certification results in Reengineered Software.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model 77

Software Reengineering Process

Verification

Verification 1 Verify the Reengineered Soßware work product.

Carry out correctness verification in team reviews as
necessary to ensure correctness of abstracted specifications
and/or redeveloped software. Use the Correctness
Verification Process.

Measurement

Measurement 1 Measure the fitness for use of the reengineered software
using the Cleanroom certification processes and associated
measures.

Exit

The process is complete when one of the exit criteria is
satisfied.

Exit 1 The Reengineered Software has been completed, including
any necessary redevelopment to meet requirements,
abstraction of functional semantics, and certification of
fitness for use.

Exit 2 Reengineering activity has revealed that the candidate
software is not fit for use in the product and project plans
must be changed.

78 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

Increment Design Process

Increment Design Process
A Cleanroom development process

The purpose of the Increment Design Process is to design and code a
software increment that 1) satisfies the Increment Construction Plan, Function
Specification, and Software Architecture, and 2) conforms to Cleanroom design
principles and quality criteria. The development team documents each
increment in the Increment Design.

Increments are designed and implemented as usage hierarchies through box
structure decomposition. This process preserves referential transparency
between successive decompositions to maintain intellectual control.
Increment designs can be expressed in object, functional, or other forms.
Each increment is based on a prior specification. Increment specifications
are expressed in stimulus history-based black box and state-based state box
forms. Increment designs and implementations are expressed in procedure-
based clear box forms that can introduce new black boxes for further
decomposition. Reused or reengineered components are incorporated as
planned.

Team reviews during the Increment Design Process focus on issues such as
clarity, maintainability, reuse, and conformance to style. In the companion
Correctness Verification Process, the team focuses exclusively on correctness.
Specifications, designs, and implementations evolve during the Increment

Design Process, and intended functions are embedded in clear box
procedure decompositions to permit effective correctness verification. The
team performs correctness verification as the last intellectual pass through
the work.

The development team does not execute the increment implementation. First
execution is performed by the certification team in the Statistical Testing and
Certification Process after the development team has completed verification
in the Correctness Verification Process.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model ■ 79

Increment Design Procc:

Objectives

Objective 1 The increment design and implementation satisfy the
Function Specification, the Software Architecture, and the
Increment Construction Plan.

Objective 2 The increment design and implementation are verifiably
correct decomposition of required functions.

Objective 3 Intellectual control over increment design and
implementation is maintained through team reviews.

Participants

Development team, with specification team available for
consultation and review.

Entry

The process begins when one of the entry criteria is satisfied.

Entry 1 The Software Requirements, Function Specification, Usage
Specification, Software Architecture, Reengineered Software,
and Increment Construction Plan are sufficient for
increment design, and a software increment is scheduled for
development or change. These work products are the basis
for developing the Increment Design, as well as a source of
revisions to it.

Entry 2 An Increment Verification Report or Increment Certification
Report identifies faults or failures requiring correction of
the Increment Design.

Entry work products and the supporting work product are
available.

The Engineering Change Log describes proposed changes.

80 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

Increment Design Process

Tasks

Taskl

Task 2

Review the work products that are the basis for the
increment design.

Review the Increment Construction Plan to identify the user
functions to be implemented in the increment.

Review the Function Specification for definitions of the user
functions to be implemented in the increment.

Review the Software Architecture for the architectural
strategy to be maintained in the increment.

Design and implement the software increment as a usage
hierarchy through box structure decomposition.

EXPLANATION: BOX structure usage hierarchy

Box structure decomposition results in a usage hierarchy of
objects, modules, and other units of code. The box structure
hierarchy for an increment is the completed increment; the
box structure hierarchy for the final increment is the
completed software product.

Decompose history-based black box specifications into state-
based state box specifications with equivalent behavior in all
circumstances of use.

Decompose state box specifications into procedure-based
clear box designs with equivalent behavior in all
circumstances of use. Introduce new black box uses in clear
box designs as necessary.

Create clear box designs as structured procedures that fully
define control and data relationships among new black box
uses and other design elements.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model 81

Increment Design Process

Repeatedly decompose new black boxes into state box and
clear box forms. Continue decomposition until designs can
be implemented wit's no further invention required.

Maintain referential transparency between decompositions
for intellectual control.

EXPLANATION: Referential transparency

Cleanroom minimizes the risk of integration faults through
development based on the mathematical principle of
referential transparency. Referential transparency in box
structure hierarchies requires that the black box
specifications embedded in clear boxes at each level of
decomposition precisely define the required functional
behavior of their subsequent decompositions into state and
clear boxes. With referential transparency, intellectual
control is maintained and independent work at lower levels
can proceed without concern for functional interactions at
higher levels.

Incorporate components from Reengineered Software into
the increment as planned.

Attach intended functions to the control structures in clear
box procedure designs for use in correctness verification.

EXPLANATION: Intended functions

Intended functions are a key Cleanroom concept and are
essential to achieving Cleanroom objectives. An intended
function is a definition of the full functional effect on data of
the control structure (sequence, ifthenelse, whiledo, etc.) to
which it is attached. Intended functions typically appear as
comments in the clear box. They are often expressed in black
box or state box form, particularly as conditional rules, and
are used in verifying their control structure expansions.

82 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

Increment Design Process

EXAMPLE: Intended function

The following ifthenelse operates on integers. Its intended
function is attached in square brackets:

[set z to maximum of x and y]
if x>y
then z := x
else z := y
endif

The intended function and its control structure
decomposition are referentially transparent. The ifthenelse
is correct if it carries out the operations on data prescribed by
its intended function.

If necessary, translate designs into the implementation
language and review for correct translation.

Refer to the Usage Specification for information about the
operational environment. Refer to the Increment
Verification Report or Increment Certification Report for
faults or failures requiring correction.

Document the design and code in the Increment Design.

Task 3

REFERENCE: BOX structure specification and design

[Mills 86], [Mills 87], [Mills 88]

Improve the Increment Design through team reviews.

Conduct frequent development team reviews of the
evolving Increment Design to discuss design strategies and
improvements, and assess characteristics including
understandability, verifiability, and maintainability. Make
design simplification and style compliance explicit review
objectives for efficient correctness verification. Redesign for
simplicity where cost effective.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model ■ 83

Increment Design Process

EXPLANATION: Writing for verification

Correctness verification is only possible if designs are
verifiable. This is not to say that designs are not correct
unless they are verifiable, only that they are not verifiable
correct.

Cleanroom designs are written for verification. The
stepwise unfolding of specification and design in box
structure decompositions ensures traceability of design to
specification at every level of the usage hierarchy. Each
specification is "distributed" as intended functions for design
components during the Increment Design Process, and
design components are verified against their intended
functions during the Correctness Verification Process.

Identify opportunities for state migration and use of
common services.

EXPLANATION: State migration

State migration is a Cleanroom strategy for improving and
simplifying designs.

State migration concerns placement of state data at the most
effective level of decomposition for its use. It implements
the software engineering principle of information hiding for
limitation of data scope. State migration places data based on
its scope of usage at as low a level in a system hierarchy as
possible, but at as high a level as is necessary. Migration of
state data may be possible whenever new black boxes are
created in a given clear box. Any state data item used solely
by one lower level box can be migrated to it.

EXPLANATION: Common services

Use of common services is another Cleanroom strategy for
improving and simplifying designs.

Common services are reusable components. They may be
newly created for a given system, or drawn from a reuse

84 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

Increment Design Process

library. Common services afford economy in system size,
effective use of development resources, efficient verification,
and increased reliability.

Task 4 Perform individual correctness verification.

Apply function-theoretic correctness verification on an
individual basis to evolving designs, with the objective of
entering the Correctness Verification Process with few faults.

Verification

Verification of the correctness of the Increment Design is so
critical to Cleanroom objectives that an entire process is
devoted to it. See the Correctness Verification Process.

Measurement

See Common Cleanroom Process Elements on page 21.

Exit

The process is complete when the exit criterion is satisfied.

The Increment Design has been completed.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model ■ 85

Correctness Verification Process

Correctness Verification Process
A Cleanroom development process

The purpose of the Correctness Verification Process is to verify the
correctness of the software increment using mathematically based
techniques.

Correctness verification is carried out in development team reviews using
function-theoretic reasoning. Black box specifications are verified to be
complete, consistent, and correct. State box specifications are verified with
respect to corresponding black box specifications. Clear box procedures are
verified with respect to corresponding state box specifications; every control
structure in every clear box procedure is verified against its intended
function using the Correctness Conditions of the Correctness Theorem
[Linger 79]. Faults found in verification reviews are documented in the
Increment Verification Report and are corrected by the specification and
development teams under engineering change control. The specifications
and designs are then reverified.

Written proofs of correctness based on function-theoretic techniques provide
additional rigor if necessary for life-, mission- and enterprise-critical
software.

The Correctness Verification Process is concurrent with the Increment
Design Process. Correctness verification is the last intellectual pass at each
level of decomposition, the last line of defense against failures in statistical
testing and certification. The objective of correctness verification is to enter
testing with no faults in the implemented design. Following completion of
verification by the development team, the increment is turned over to the
certification team for first execution.

86 Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

Correctness Verification Process

Objectives

Objective 1 The team agrees that the software increment is correct with
respect to its specification, i.e., that it contains no remaining
faults.

Objective 2 Faults and inadequacies found in correctness verification are
documented to permit subsequent analysis for process
improvement.

REFERENCE: CMM Defect Prevention KPA

If compliance with this KPA is an organizational objective,
its specific requirements should be reviewed when the
Correctness Verification Process is tailored for organizational
or project use.

Participants

Development team, with specification team available for
consultation.

Entry

The process begins when one of the entry criteria is satisfied.

Entry 1 A new Increment Design has been completed or is in
progress.

Entry 2 A reengineered or corrected Increment Design has been
completed or is in progress.

Entry work products and these supporting work products are
available.

The Function Specification defines the required external
behavior of the functions allocated to the increment in the
Increment Construction Plan.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model ■ 87

Correctness Verification Process

The Software Architecture defines the architectural strategy
to be used in the increment design.

Tasks

Taskl Verify the correctness of the software increment using
mathematically-based verification techniques.

Verify the correctness of every specification and design
structure in the Increment Design.

Carry out verbal proofs of correctness based on function-
theoretic techniques in team verification reviews. A
consensus of team members is required to establish
correctness.

For black box verification, determine the completeness,
consistency, and correctness of its specification.

For state box verification, compare state box behavior to
corresponding black box behavior for equivalence.

For clear box verification, apply the Correctness Conditions
of the Correctness Theorem to determine the correctness of
every control structure (including embedded black box
specifications) with respect to its intended function.

EXPLANATION: Correctness conditions for basic control
structures

"Correctness Conditions" for the three basic control
structures are given as follows in question form, (f stands for
intended function, p for predicate, g and h for operations on
data.)

Sequence:

M
do

Does g followed by h do f?

88 Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

Correctness Verification Process

g;
h

enddo

Ifthenelse:

ifp
then

g

When p is true
does g do f,

and when p is false
does h do f?

else
h

endif

Whiledo:

[fj
while p

g
enddo

Does the loop terminate,
and when p is true

does g followed by f do f,
and when p is false

does doing nothing do f?

EXAMPLE: Correctness verification

The following miniature program that operates on integers
contains three control structures, namely, two ifthenelses in
a sequence (max is short for maximum, abs for absolute
value).

do [z := max(x, abs(y)) and t := abs(y)]
[t:=abs(y)]
if y<0
then

t:=-y
else

t:=y
endif;
[z := max(x, t)]
ifx>t
then

z :=x

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model 89

Correctness Verification Process

else
z:=t

endif
enddo

For verification, the Correctness Conditions corresponding
to each control structure must be checked:

First ifthenelse:

When y < 0 is true,
does t := -y do [t := abs(y)],

and when y < 0 is false,
does t := y do [t := abs(y)]?

Second ifthenelse:

When x > t is true,
does z := x do [z := max(x, t)],

and when x > t is false,
does z := t do [z := max(x, t)]?

Sequence:

Does [t := abs(y)] followed by [z := max(x, t)] do [z := max(x,
abs(y) and t := abs(y)]?

In each case, the answer is yes. Note that in the final
sequence verification, the ifthenelse logic does not appear,
having been replaced by its equivalent intended function
definitions. Thus, the verification of individual control
structures does not depend on their decompositions, which
are verified separately. The reasoning required in each
verification step is thereby localized and kept manageable to
help preserve intellectual control, even at high levels of
design. In this way, early increments of systems can be
completely verified for correctness, even though subsequent
increments are yet to be designed.

90 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

Correctness Verification Process

Task 2

Task 3

Task 4

RECOMMENDATION: Correctness conditions for other recurring
constructs

Modern software development environments employ a
wide variety of features and constructs that reduce to—but
are often not easily recognizable as—standard control
structures such as those mentioned above. Visual
programming languages have graphical elements. Real-
time facilities have timing mechanisms such as process
rendezvous. Application generators have high-level
resources such as GUI builders. Multi-tasking, multi-user,
multi-threaded applications use such control mechanisms as
resource locking. And so on.

A project team should establish the correctness conditions
for such recurring constructs using function-theoretic
reasoning. The development of standard verification
protocols for recurring idioms or patterns is precisely the sort
of process tailoring that needs to be done to adapt the
Cleanroom process to a given project and environment.

Document findings of team verification reviews.

Create an Increment Verification Report documenting all
faults, problems, and improvements identified in
verification reviews, and assign corrective actions.

Create written proofs of correctness as necessary for critical
software.

Develop written proofs of correctness as necessary for life-,
mission-, and enterprise-critical software, and verify the
proofs in team reviews.

Document the proofs in the Increment Design.

Reverify all corrections to faults.

Perform reverification reviews on corrections to faults,
including reverification of the full context of corrections to
avoid unforeseen side effects.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model ■ 91

Correctness Verification Process

Verification

Verification 1 Confirm that every box structure has been verified as correct
by team consensus.

Confirm that every black box, state box, and clear box in the
new and changed portions of the Increment Design has been
verified to be correct.

Measurement

Measurement 1 Measure the Increment Design and the Increment Design
Process.

The Correctness Verification Process is a focused team
review of the Increment Design. Measure the quality of the
Increment Design and the effectiveness of the Increment
Design Process in terms such as the number, type, and
severity of faults found in the verification reviews.

Exit

The process is complete when one of the exit criteria is
satisfied.

Exit 1 The increment has been verified with no faults found.

Exit 2 The increment has been verified and contains faults that
must be corrected and the engineering changes verified.

Exit 3 The black box, state box, or intended function definitions are
insufficient for effective verification, and must be revised
before verification can be accomplished.

Exit 4 Initial verification has found faults in sufficient quantity and
severity that the process must be terminated and the
increment redesigned.

92 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

Correctness Verification Process

In each case, the Increment Verification Report is created.
Written proofs, if any, are added to the Increment Design.
The Correctness Verification Process cannot be completed
until the Increment Design is completed.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model ■ 93

Usage Modeling and Test Planning Process

Usage Modeling and Test Planning
Process
A Cleanroom certification process

The purpose of the Usage Modeling and Test Planning Process is to 1) refine
the Usage Specification to create usage models for software testing, 2) define
test plans, 3) obtain customer agreement on the usage models and test plans
as the basis for software certification, and 4) generate statistical test cases and
prepare the test environment.

The certification team creates the Usage Models and Increment Test Plan, and
generates the Statistical Test Cases. Usage models are used to generate
statistical test cases and monitor the progress of testing in the Statistical
Testing and Certification Process. A usage model for a software system
represents an infinite population of possible uses. It consists of a structural
component that defines possible traversals of states of use by users, together
with a probability component that defines the likelihood that particular
traversals will occur. In statistical testing, test cases are generated from the
usage model based on its probability distribution. Multiple usage models
may be required for multiple classes of users and environments. Models are
developed incrementally in accordance with the Increment Construction Plan,
and accumulate into final form in parallel with increment designs. The
customer reviews the usage models, and agrees that they will generate all
scenarios of use, are correctly weighted, and are appropriate for certification.

Usage model statistics provide a great deal of information about the testing
effort that will be required to achieve certification goals given projected failure
rates in testing. Usage model analysis provides a basis for test planning, and
is an effective management tool for reducing the risk of inaccurate resource
and schedule estimates.

94 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

Usage Modeling and Test Planning Process

Objectives

Objective 1 Valid usage models are defined which represent all possible
uses of the software under expected or other usage
conditions.

Objective 2 A statistical testing plan based on the usage models is defined
and validated through model analysis and simulation.

Objective 3 The customer agrees on the usage models and statistical test
plan as the basis for software certification.

Participants

Certification team and customer, with specification team
available for consultation and review.

Entry

The process begins when one of the entry criteria is satisfied.

Entry 1 The Usage Specification, Function Specification, and /or
Increment Construction Plan have been completed or
changed. They are the basis for developing the Usage Models
and Increment Test Plan, as well as a source of revisions to
them.

Entry 2 The Usage Models or Increment Test Plan require revision
for changes from increment development or certification'.

Entry work products and these supporting work products are
available.

The Software Architecture and Reengineered Software may
also provide information for development of the Usage
Models.

The Engineering Change Log describes proposed changes.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model ■ 95

Usage Modeling and Test Planning Process

Tasks

Taskl

Task 2

Define the usage models to be developed.

Use the Usage Specification to define the usage models to be
elaborated, and the scope and purpose of each.

Include special purpose models as necessary, for example, for
certification of infrequently used functions with high
consequences of failure.

EXPLANATION: Special purpose models

A usage model represents the conditions under which
software is used. In general, expected usage conditions are
modeled. In addition, other usage conditions may be of
interest as well, and are modeled for special purposes.
Hazardous usage conditions, for example, may be of interest
for safety critical software. Malicious usage conditions might
be modeled for software with special security requirements.
Usage can be characterized in whatever terms are important
in the certification context.

Consider use of actual user input where available. Real-time
data feeds or the output of automated usage capture facilities
can be used as components of usage models.

Define the structure of each usage model.

Refine the Usage Specification to develop the Usage Models.
For each model, define all possible usage states and their
transitions based on the functions required by the Increment
Construction Plan and defined in the Function Specification.

Define the structure of each model in the Usage Models
document.

96 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

Usage Modeling and Test Planning Process

Task 3

RECOMMENDATION: Markov chain usage models

The structure of a usage model can be represented as a
Markov chain. A Markov chain usage model reflects the
stochastic nature of software use, and permits analysis of
usage and automation of test activity.

The usage model structure represents all possible uses of the
software, expressed in terms of the initial usage state,
subsequent sequences of possible usage states, and the
terminal usage state. The model can be represented as a
directed graph, whose nodes (usage states) are connected by
arcs (possible transitions in use). Any usage scenario can be
generated from a traversal of the model structure.

Ambiguity, inconsistency, or complexity in the Function
Specification is often identified during creation of usage
model structures.

REFERENCE: Usage modeling

[Whittaker 93], [Whittaker 94a]

RECOMMENDATION: Early planning for test automation

It is crucial to anticipate test automation requirements during
usage modeling. Linkage with test tools, pre- and post-
processing steps, live data feeds, response capture facilities,
and numerous other aspects of automated testing are likely to
be simpler if test automation is considered during usage
modeling.

Define the transition probabilities of each usage model.

Determine transition probabilities between usage states based
on usage information and certification goals.

Employ user estimates and experience with similar systems
and prior versions as sources of information about usage
probabilities.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model ■ 97

Usage Modeling and Test Planning Process

Define transition probabilities for each model in the Usage
Models document.

Task 4

EXPLANATION: Transition probabilities

While the structure of the usage model defines possible use,
the transition probabilities define expected use. The
probabilities associated with the transitions in the usage
model may be known, partially known, or unknown. If they
are known, as is often the case with well-instrumented
systems in mature domains, the probabilities can be directly
assigned. If they are not known, they can be estimated or
made uniform. If they are partially known, a combination of
these strategies can be used.

Probabilities can also be defined for other than expected use,
for example, to emphasize testing of infrequently used
functions with high consequences of failure.

The validity of conclusions drawn in statistical testing is
entirely related to the usage models employed. Systematic
acquisition of knowledge about expected usage is essential for
developing accurate usage models.

REFERENCE: Optimization of usage models

Cleanroom practice is evolving toward automatic generation
of transition probabilities from usage constraints. Operations
research techniques can be applied to optimize usage models
for an objective function, such as minimum testing cost,
subject to usage constraints that characterize available
knowledge about expected use.

[Poore 95b], [Walton 95b]

Validate the usage models.

Generate statistics for each usage model. Evaluate the
statistics to validate the overall usage profile, and to estimate
resources and schedules required to achieve certification
goals.

98 Cleanroom Software Engineering Reference Model CMU/SE1-96-TR-022

Usage Modeling and Test Planning Process

Develop recommendations based on the analysis, for
example, cost-saving simplifications to the user functions
defined in the Function Specification.

EXPLANATION: Practical interpretation of usage model analysis

Important information is available through standard
calculations on a Markov chain usage model, for example:

• the expected length of a usage scenario (i.e., test case
length)

• the expected minimum number of usage scenarios until a
given usage state occurs for the first time

• the expected occupancy of each state of use (as a
proportion of all states of use) in the long-term use of the
software

• the expected minimum number of test cases required to
cover all states and all transitions of the model

• the expected number of test cases required to achieve
target levels of reliability and confidence.

Interpretations of these calculations provide insights about
potential hazards in use, allocation of development and
testing resources, and other information for management
decision making.

Task 5

REFERENCE: Usage model analysis

[Whittaker 94b]

Develop a plan for certification testing of the software
increment.

Develop a test plan, including schedules, staffing, training,
hardware and software environment, certification goals, use
of statistical test cases, use of operational input, procedures
for verifying correct software performance, and
documentation.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model 99

Usage Modeling and Test Planning Process

Define the test plan to ensure experimental control,
including test procedures, test monitoring, results recording,
failure evaluation, and engineering change control.

EXPLANATION: Experimental control

Cleanroom testing is conducted as a statistical experiment to
permit scientifically valid conclusions about the fitness for
use of the software.

In a statistical experiment, a series of random trials is
performed under specified conditions, the outcomes of the
trials are determined according to specified criteria, and
conclusions about the probabilities of the outcomes are
drawn.

In statistical testing, the trials are test cases that are randomly
generated from the usage models, the outcomes correspond
to the performance of the software, and the conclusions
concern the probabilities of correct and incorrect software
performance. Conclusions are used to inform decisions about
test management and product release.

Many aspects of statistical testing must be controlled to
preserve the properties of the statistical experiment.
Performing trials under specified conditions means, for
example, mat the same software version must be used in
each test case; a new software version marks the beginning of
a new experiment. Determining the outcomes of the trials
according to specified criteria means, for example, that the
judgments by the testers and the evaluations by the test
oracles must be consistent across all test cases. Explicit
policies and operating procedures are required to ensure
experimental integrity in statistical testing.

REFERENCE: Experimental control

[Trammell 94], [Trammell 95]

Plan for additional testing techniques to be applied in
conjunction with statistical testing as necessary.

100 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

Usage Modeling and Test Planning Process

Task 6

Task 7

EXPLANATION: Other testing strategies

Statistical testing for reliability certification is a form of
random testing. Statistical methods for nonrandom testing
are often used to accomplish specific objectives as well. Test
cases producing the fastest coverage of the usage model, for
example, might be generated for use at the beginning of
testing to reveal any immediate problems with the software.

Some forms of nonstatistical testing may be included in the
test plan as well, such as specific tests that are required by the
customer, by a standard, or by law.

Document testing plans in the Increment Test Plan.

Generate the statistical test cases.

Use the Usage Models to generate the Statistical Test Cases to
be used in the statistical testing.

EXPLANATION: Manual vs. automated testing

For manual testing, the generated test cases might be "scripts'
of instructions to human testers. For automated testing, the
scripts might be command sequences.

Prepare the statistical testing environment.

Establish the hardware configuration and software
environment required to test the software.

EXPLANATION: Test environment

Preparation of the test environment may be a resource-
intensive task. In such cases, it will receive special emphasis
in the Schedule and Resource Plan developed during the
Project Planning Process and in the Usage Specification
developed in the Usage Specification Process.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model ■ 101

Usage Modeling and Test Planning Process

Verification

Verification 1

Verification 2

Verify the evolving Increment Test Plan and Usage Models
work products in team reviews.

Conduct frequent certification team reviews of the evolving
Increment Test Plan and Usage Models for completeness,
consistency, correctness, and simplicity. Confirm through
quantitative analysis of usage model properties, such as the
long run probabilities of state occurrence, that the models are
consistent with user estimates and experience.

Verify the completed Increment Test Plan and Usage Models
work products with the customer and the project team.

Review the Increment Test Plan and Usage Models with the
customer, the specification and certification teams, and
affected peer groups to obtain agreement on them as the basis
for software certification.

Measurement

Measurement 1 Measure the Usage Models work product.

Measure the size of the Usage Models in terms such as the
number of usage states, state transitions, and statistically
typical paths.

Exit

The process is complete when the exit criterion is satisfied.

The Increment Test Plan and Usage Models have been
completed and agreed to by the customer as the basis for
software certification.

102 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

Statistical Testing and Certification Process

Statistical Testing and Certification
Process
A Cleanroom certification process

The purpose of the Statistical Testing and Certification Process is to
demonstrate the software's fitness for use in a formal statistical experiment.
"Fitness for use" is defined with respect to the usage models and certification
goals employed in the testing process. The certification goals, first established
in the Measurement Plan and refined in the Increment Test Plan, may be
expressed in terms such as software reliability, reliability growth rate, and
coverage of the usage defined in the usage models.

Software increments undergo first execution in this process. The increments
are compiled, the Executable System is built, the statistical test cases are
executed under experimental control, and the test results are evaluated. The
success or failure of test cases is determined by comparison of actual software
behavior with the required behavior defined in the Function Specification.
Failures found during statistical testing are documented in the Statistical
Testing Report. Intermediate and final test results are evaluated to inform test
management decisions. As testing proceeds, the values of certification
measures are compared with certification goals. The results of the
comparisons drive decisions on continuing testing, stopping testing for
engineering changes, stopping testing for reengineering and reverification,
and final software certification.

In addition to measuring software quality and reliability, certification metrics
are also used as measures of process control. Cleanroom team performance
standards based on historical data, such as failure rates in statistical testing
of prior systems, are compared to current metrics to inform management
decisions. Evaluations and decisions regarding product quality and process
control are documented in the Increment Certification Report.

CMU/SE1-96-TR-022 Cleanroom Software Engineering Reference Model ■ 103

Statistical Testing and Certification Process

Objectives

Objective 1 Software testing is conducted in a formal statistical design
under experimental control.

Objective 2 The software is demonstrated to perform correctly with
respect to its specification.

Objective 3 Statistically valid estimates of the properties addressed by the
certification goals are derived for the software.

Objective 4 Management decisions on continuation of testing and
certification of the software are based on statistical estimates
of software quality.

Participants

Certification team, development team, and project software
manager.

Entry

The process begins when the entry criteria are satisfied.

The Increment Test Plan has been completed, the Statistical
Test Cases have been generated, and the test environment
has been prepared.

A new or corrected Increment Design is available for
compilation.

The Function Specification and Usage Models are available
for use in evaluating observed behavior against specified
behavior.

104 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

Statistical Testing and Certification Process

Tasks

Taskl

Task 2

Prepare the software increment for testing.

Compile the software increment. If corrections are necessary,
initiate the Engineering Change Process. After successful
compilation, create the Executable System work product
containing the load modules required for execution.

Perform other types of testing if necessary.

Perform other types of testing if necessary prior to statistical
testing. For example, special testing may be required to
demonstrate specific scenarios of use, or to achieve complete
usage model coverage with the minimum number of test
cases.

EXPLANATION: Order of statistical and other testing

The key consideration in determining whether to perform
other types of tests before or after statistical testing is the effect
on certification. When a reliability estimate is made at the
conclusion of statistical testing, it applies to the specific
version of the software that was tested. If changes are made
as a result of subsequent testing, the reliability estimate no
longer applies.

It is generally preferable to perform any non-statistical tests
prior to statistical testing. Non-statistical tests performed
after statistical testing may invalidate the reliability
certification if the software is changed. -

Task 3 Execute the statistical test cases in the test environment.

Execute the Statistical Test Cases according to the procedures
defined in the Increment Test Plan.

Task 4 Evaluate the statistical test case results.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model ■ 105

Statistical Testing and Certification Process

Evaluate the correctness of the software responses with
respect to the behavior defined in the Function Specification.
If failures are observed, evaluate their impact on the
continuation of testing, experimental control, and the
validity of certification results. If corrections are necessary,
initiate the Engineering Change Process.

EXPLANATION: Independent trials

A key requirement in a statistical experiment is that the trials
be independent—that is, the outcome of one trial must have
no effect on the outcome of any other trial. While randomly
generated test cases may ensure independent trials in
statistical testing, the requirement for independence can still
be undermined by failures in testing. For example, if a failure
on a test case "blocks" access to functions required by a
subsequent test case, testing should be stopped the problem
fixed.

Document test results in the Statistical Testing Report.
Record data for each failure, including the test environment,
test case, test results, and failure type and severity, together
with any other information that will assist in determining its
cause.

Task 5 Derive certification measures.

Use the Usage Models, Statistical Test Cases, Statistical
Testing Report, and results of other testing to derive
measures of the fitness for use of the software with respect to
certification goals.

Measures can include reliability and confidence, reliability
growth rate, mean time to failure, representativeness of the
test case sample, and other measures derived from
comparison of expected and observed software performance.

Use statistical methods such as hypothesis testing, interval
analysis, and analysis of failure data with reliability models.

106 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

Statistical Testing and Certification Process

Task 6

EXPLANATION: Reliability measurement

Software reliability measurement is a hallmark of
Cleanroom. Reliability estimation based on Markov chain
usage models is a prominent approach to reliability
measurement in Cleanroom practice. The Markov chain
approach provides measures of reliability, confidence, and
other stopping criteria.

Classical statistical hypothesis testing is also used in
Cleanroom for reliability estimation. Models of reliability
growth can be used where their underlying assumptions are
justified.

REFERENCE: Certification measures

[Whittaker 94b]

Document certification measures in the Increment
Certification Report.

Compare certification measures with certification goals.

Compare the values of trends in the certification measures
with project goals for product quality and process control.

If appropriate, combine certification measures from the
current statistical testing experiment with measures from
other experiments.

EXPLANATION: Conditions for combining test information

If test conditions (for example, software version, usage
model, execution environment) are the same, data from
various statistical testing experiments can simply be
combined. If testing conditions are not the same, more
complex approaches to combining information must be used
to ensure the validity of conclusions.

Document evaluations in the Increment Certification Report.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model ■ 107

Statistical Testing and Certification Process

Task 7 Decide whether or not to stop testing.

Positive case: Testing can be stopped and the software
certified as fit for use if 1) the values of the current
certification measures satisfy certification goals, and 2) no
failures have been observed during testing of the current
software version (or none worth the cost and risk of
correction).

Negative case: Testing should be stopped and the software
reengineered and reverified process control standards have
been violated. Violation of process control standards occurs
when certification goals cannot be achieved given current
values of the certification measures and the remaining
schedule and resources for testing.

EXPLANATION: Certification goals and process control standards

"Certification goals" are targets for final results. "Process
control standards" are gauges of intermediate progress toward
certification goals. The certification goals answer the
question "Is the software currently fit for its intended use?"
Process control standards answer the question "Is the
software likely to be certified as fit for use on the expected
schedule?" In general, certification goals are defined by the
customer, process control standards are defined by the
developer, and both exist within the context of the predefined
certification protocol in the test plan.

Document decisions in the Increment Certification Report.

Verification

Verification 1 Verify that the tests were executed according to the test plan.

Verification 2 Verify the correctness of statistical calculations.

108 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

Statistical Testing and Certification Process

Measurement

Measurement 1

Measurement 2

Exit

Exitl

Exit 2

Measure the Statistical Test Cases and the results of their
execution.

Measure the Statistical Test Cases in terms such as the
number and size of the test cases, and the execution times for
each.

Measure the number and severity of failures reported.

Measure the Statistical Testing and Certification Process.

Measure the sufficiency of testing in terms such as the
coverage of the usage models employed and the statistical
similarity between expected usage and tested usage.

The process is complete when one of the exit criteria is
satisfied.

The software increment satisfies certification goals.

The software increment has failed to satisfy certification goals
and must be reengineered and reverified before testing can
resume.

In either case, the Statistical Testing Report and Increment
Certification Report are completed.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model ■ 109

110 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

5 Cleanroom Software Engineering Work
Products

This section defines the purpose and content of work products produced by the
Cleanroom processes.

Cleanroom Engineering Guide

The Cleanroom Engineering Guide is created in the Project Planning Process. It
defines the adaptation and refinement of the Cleanroom processes to meet
project-specific requirements. It includes process definitions, work product
definitions, and local policies, procedures, templates, and forms that define how
a project will be conducted. It identifies the facilities, hardware and software
environments, and tools to support Cleanroom operations, and defines
guidelines for their use.
It also defines relationships among Cleanroom processes.

An organization-level Cleanroom Engineering Guide constitutes the "standard
software process" required in the CMM Level 3 Organization Process Definition
KPA. The Cleanroom Engineering Guide may be successively refined and
elaborated for use by organizational divisions, product lines, and specific projects.
At each level, the Guide is tailored for standards, technologies, languages and

other aspects of the development environment at that level.

The Cleanroom Engineering Guide for a project constitutes the "tailored version
of the organization's standard software process" required in the CMM Level 3
Integrated Software Management KPA. The tailored Guide also documents the
"plans for the project's software engineering facilities and support tools"
required in the CMM Level 2 Software Project Planning KPA.

Configuration Management Plan

See Software Development Plan.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model ■ ill

Engineering Change Log

The Engineering Change Log is created and maintained in the Engineering
Change Process. It is the record of all engineering change requests, together with
their evaluations, impacts, and status.

Executable System

The Executable System is created in the Statistical Testing and Certification
process. It is the executable form of the accumulating increments to be used for
testing and customer evaluation.

Function Specification

The Function Specification is created in the Function Specification Process. It
documents 1) software boundaries and interfaces with hardware, other software,
and human users and 2) the external view of a system in terms of the mapping
of all possible stimuli to their corresponding responses in all possible
circumstances of use, including correct and incorrect, frequent and infrequent,
and nominal and stress usage conditions.

Based on set theory and function theory, the Function Specification is a precise
statement of the Software Requirements as a mathematical function. The
domain of the function is all possible stimulus histories and the range is all
correct responses. The mathematical form of the Function Specification as a set
of mapping rules provides a flexible yet verifiable basis for function
decomposition. v*

From the customer's perspective, the Function Specification is the definitive
statement of functional requirements for the software. From a development
perspective, the Function Specification is the top-level black box in the box
structure usage hierarchy that is fully realized in the Increment Design.

Increment Certification Report

The Increment Certification Report is created in the Statistical Testing and
Certification Process. It contains values for measures of certification goals (the
desired "ends") and measures of process control (the efficiency of "means" based
on historical performance). Certification measures may include reliability and
confidence, mean time to failure, representativeness of the test case sample, and

112 ■ Cleanroom Software Engineering Reference Model CMU/SE1-96-TR-022

other measures of product quality. Process control measures may include
reliability growth rate, error rate per unit volume of code, and other measures of
process performance.

The Increment Certification Report documents the quantitative basis for
management decisions about the testing process. Continuation of testing,
cessation of testing for engineering change or reengineering, and certification of
the software are justified on the basis of product and process measures. The
Increment Certification Report documents the "analysis of data on defects
identified in testing" required in CMM Level 3 Software Product Engineering
KPA. It also documents the "results of the project's quantitative process
management activities" required in the CMM Level 4 Quantitative Process
Management KPA.

Increment Construction Plan

The Increment Construction Plan is created in the Increment Planning Process.
It specifies the number of increments into which a Cleanroom Project will be
divided, the functions that will be implemented in each increment, and the
schedule and resources allocated for each increment. The Increment
Construction Plan is used by management to assign tasks, track progress, and
monitor product quality and process control.

The earliest version of the Increment Construction Plan may be based on the
customer's Statement of Work and/or the Software Requirements. This version
will contain assumptions that will be explored further in the course of preparing
the Risk Analysis Plan and the Reuse Analysis Plan. A sound basis for increment
planning will exist when the Function Specification and the Usage Specification
have been prepared; the Increment Construction Plan should be considered
preliminary until these two work products are available. The Increment
Construction Plan is also influenced by the Software Architecture. The
Increment Construction Plan documents the "software life cycle with predefined
stages of manageable size" required in the CMM Level 2 Project Planning KPA.

Increment Design

The Increment Design is created in the Increment Design Process. It is the box
structure implementation of a set of functions named in the Increment
Construction Plan and defined in the Function Specification. The Increment
Design is a hierarchy of components in which each component is represented in
black box (history-based), state box (state-based), and clear box (procedure-based)
forms.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model ■ 113

Clear boxes in the Increment Design may contain new black boxes which are
either implemented or stubbed. In each Increment Design, some previously
stubbed functions are implemented.

Increments are cumulative. An Increment Design is the sum of all specification,
design, and code to date. The final Increment Design is the completed product.

Increment Evaluation Report

The Increment Evaluation Report is originated by the customer. It is the
customer's documentation of feedback from increment execution and
evaluation.

Increment Test Plan

The Increment Test Plan is created in the Usage Modeling and Test Planning
Process. It contains all information needed by the certification team for the
Statistical Testing and Certification Process, including schedules, staffing,
training, hardware and software environments, data collection forms, test case
evaluation procedures, certification goals, and statistical models. The Increment
Test Plan is the "plan for system testing to demonstrate that the software satisfies
its requirements" required in the CMM Level 3 Software Product Engineering
KPA.

Increment Verification Report

The Increment Verification Report is created in the Correctness Verification
Process. It is the record of experience during the Correctness Verification Process,
including staff members participating, number of verification sessions, time
spent in each session, faults found during each session, and any other
information relevant to assessment of the correctness of the design. Data for
sessions in which engineering changes are verified are also included in the
Increment Verification Report.

In addition to the raw data above, the Increment Verification Report may
contain other measures that provide indications of process control. Such
measures may include percentage of engineering changes that are found to be
incorrect, the distribution of faults with regard to severity and type, and number
of faults found per unit volume of code.

114 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

The Increment Verification Report constitutes the "data on the conduct and
results of peer reviews" required in CMM Level 3 Peer Reviews KPA. It also
documents the "data on defects identified in peer reviews" required in the CMM
Level 3 Software Product Engineering KPA.

Measurement Plan

See Software Development Plan.

Performance Improvement Plan

The Performance Improvement Plan is created in the Performance
Improvement Process. It documents plans to improve team performance by
refining the current Cleanroom Engineering Guide and/or exploring the use of
new software technologies.

The Performance Improvement Plan contains an analysis of the cause of each
failure that occurred during statistical testing, and plans to prevent the
recurrence of the underlying problem. It also documents the comparison of
current performance with planned or historical performance for the measures
defined in the Measurement Plan.

The Performance Improvement Plan documents the "causal analysis meetings"
and "revisions to the project's defined software process resulting from defect
prevention actions" required in the CMM Level 5 Defect Prevention KPA; the
"incorporation of appropriate new technologies into a project's defined software
process" required in the CMM Level 5 Technology Change Management KPA;
and the "plan for software process improvement" required in the CMM Level 5
Process Change Management KPA.

Project Mission Plan

See Software Development Plan.

Project Organization Plan

See Software Development Plan.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model ■ 115

Project Record

The Project Record is created in the Project Management Process and updated in
all processes. It documents actions, reviews, decisions, measures and other
events throughout a project.

The Project Record contains formal documents, such as contracts and reports,
and informal correspondence, such as meeting notes or records of phone
conversations. It is the archive of documentation about all project events that
are not captured in other Cleanroom work products. It is a flexible, tailorable
work product that is the Cleanroom vehicle for fulfilling project documentation
requirements not met by other work products.

Reengineering Plan

The Reengineering Plan is created in the Software Reengineering Process. The
Reengineering Plan documents the tasks, schedules, and resources required to
prepare existing artifacts for reuse in the current project.

The Reengineering Plan elaborates the technical aspects of the Reuse Analysis
Plan, i.e., defines specific investigations required to make decisions about the
reusability of a component and/or adaptations required to reuse a component in
the current system.

Reuse Analysis Plan

See Software Development Plan.

Reengineered Soßware

The Reengineered Software is created in the Software Reengineering Process. It
consists of specification, design, code, usage models and/or testing artifacts
produced in the reengineering of reused components.

Risk Analysis Plan

See Software Development Plan.

Schedule and Resource Plan

See Software Development Plan.

116 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

Soßware Architecture

The Software Architecture is created in the Architecture Specification Process.
The Software Architecture identifies 1) the conceptual architecture expressed in
terms of principal software components and their relationships, 2) the module
architecture expressed in terms of layers of functional decomposition, and 3) the
execution architecture expressed in terms of dynamic software operation [Soni
95].

The Software Architecture serves as a vehicle for analyzing application and
service domains, reference architectures, reusable assets, communication
protocols, standards, and software design strategies. The Software Architecture is
a principal input to the Increment Planning and Increment Design Processes.

Software Development Plan

The Software Development Plan is created in the Project Planning Process. It is
used in the Project Management Process for task initiation, performance
tracking, and quantitative process management. The Software Development
Plan is the "software project plan" required in CMM Level 2 Software Project
Planning KPA and the "software development plan" to be used in CMM Level 2
Software Project Tracking and Oversight KPA. The Software Development Plan
consists of the following project management plans.

The Project Mission Plan defines the overall mission, goals, and objectives of the
system and the Cleanroom development project.

The Project Organization Plan defines the structure, responsibilities, and
relationships of the Cleanroom project organization and peer organizations. The
Project Organization Plan is the "documented plan to communicate intergroup
commitments and coordinate and track the work performed" required by CMM
Level 3 Intergroup Coordination KPA.

The Work Product Plan defines the Cleanroom work products to be produced by
the project. The Work Product Plan constitutes the "identification of software
work products" required in CMM Level 2 Software Project Planning KPA.

The Schedule and Resource Plan defines estimates for overall tasks, schedules,
milestones, budgets, and resources for Cleanroom work product development.
The Schedule and Resource Plan documents the "estimates of size, effort,

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model ■ 117

schedule, cost, and critical computer resources" required in CMM Level 2
Software Project Planning KPA.

The Measurement Plan defines product and process measurements, standards,
and goals for managing the project, including those for Cleanroom software
certification and statistical process control. The Measurement Plan defines the
"plan for quantitative process management" and the "strategy for data collection
and analysis" required in CMM Level 4 Quantitative Process Management KPA.

The Reuse Analysis Plan identifies sources of reusable assets and asset
acquisition and evaluation tasks. It also identifies opportunities to reuse domain
models, reference architectures, software specifications, designs, code, and usage
models. The Reuse Analysis Plan is a management plan for identification of
assets. A related work product, the Reengineering Plan, is a technical plan for
evaluation and adaptation of assets.

The Risk Analysis Plan defines methods for risk analysis, identifies project risks,
and describes strategies for risk management and avoidance. The Risk Analysis
Plan constitutes the "identification, assessment, and documentation of risks
associated with the cost, resource, schedule, and technical aspects of the project"
required in the CMM Level 2 Software Project Planning KPA.

The Standards Plan identifies and defines the application of external standards
that will be used in the project.

The Training Plan identifies project training requirements, including training in
the application domain, development environments, and Cleanroom
technology and processes. This plan is the "training plan" required in CMM
Level 3 Training Program KPA.

The Configuration Management Plan defines requirements for change control of
designated work products. This plan is the "software configuration management
plan" required in the CMM Level 2 Software Configuration Management KPA.

Software Requirements

The Software Requirements document is created in the Requirements Analysis
Process. It defines the functional, usage, performance, and environment
requirements for a software system to be developed under the Cleanroom
process. Included among requirements are operational constraints such as
dependencies on other systems, capacity requirements, and reliability
requirements. The Software Requirements are typically documented in user

118 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

terms. It is the principal input to the Function Specification and Usage
Specification Processes, where requirements are defined in the more precise
terms essential to software development and certification.

The Software Requirements are the "documentation of allocated requirements"
required in the CMM Level 2 Requirements Management KPA.

Standards Plan

See Software Development Plan.

Statement of Work

The Statement of Work is originated by the customer. It is the "documented and
approved statement of work for the software project" required in the CMM Level
2 Software Project Planning KPA.

Statistical Test Cases

The Statistical Test Cases are created in the Usage Modeling and Test Planning
Process. Statistical Test Cases are randomly generated from a usage model for use
in statistical testing of an increment. Once generated, test cases may undergo
post-processing to add information for human testers or an automated test tool.
Such information may include additional instructions (e.g., events to initiate in
the background), invocation of independent data feeds, or pointers to the
relevant "oracle" for evaluation of responses.

Each statistical test case is a complete usage scenario given as a sequence of user
inputs, beginning with a predefined initial event and ending with a predefined
terminal event. The Statistical Test Cases become a "script" for testing, and may
be annotated during testing to record responses and their evaluations.

Statistical Testing Report

The Statistical Testing Report is created in the Statistical Testing and Certification
Process. It is the record of experience in testing, and includes staff members
participating, number of compilation sessions, faults found in compilation,
number of testing sessions, number of test cases run in each session, failures
observed in test cases, faults found during investigation of failures, time required
to correct each fault, and any other information relevant to assessment of the
correctness of the executing software.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model ■ 119

The Statistical Testing Report documents the "data on defects identified in
testing" and the "performance of system testing to demonstrate that the software
satisfies its requirements" required in CMM Level 3 Software Product
Engineering KP A.

Training Plan

See Software Development Plan.

Usage Models

The Usage Models are created in the Usage Modeling and Test Planning Process.
A usage model is a formal representation of software use, often expressed as a
Markov chain. It defines the usage states of the software and the probabilities of
transitions between usage states. When software is to be certified for normal
operational use, usage probabilities are based on expected use; when the
customer requires certification for other usage conditions, the probabilities reflect
those conditions.

Usage model analysis provides numerous insights into software usage
characteristics that are useful in making management and technical decisions.
Usage models are also used as test case generators.

Usage Specification

The Usage Specification is created in the Usage Specification Process. It is a
description of the expected users, usage scenarios, and usage environments of the
software. It contains definitions of high-level usage models that record this
information, as well as the results of model analysis for management decision
making.

Work Product Plan

See Software Development Plan.

120 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

6 References

[Basili 94]

[Dyer 90]

[Ett96]

[Hausier 92]

[Hausler 94]

[Head 94]

[Linger 79]

[Linger 88]

Basili, V.R. & Green, S.E. "Software Process Evolution in the
SEL." IEEE Software 11, 7 (July 1994): 58-66.

Dyer, M. & Kouchakdjian, A. Ch. 9, "Correctness
Verification: Alternative to Structural Testing." Cleanroom
Software Engineering: A Reader. Oxford, England: Blackwell
Publishers, 1996.

Ett, W.H. & Trammell, C.J. "A Guide to Integration of Object-
Oriented Methods and Cleanroom Software Engineering."
Available WWW URL:
<http: / / source, asset.com / stars / loral / cleanroom / guide .html>
(1996).

Hausler, P.A. "A Recent Cleanroom Success Story: The
Redwing Project." Proceedings of the Seventeenth Annual
Software Engineering Workshop. Greenbelt, Md., December
1992. Greenbelt, Md.: NASA, Goddard Space Flight Center.,
1992.

Hausler, P.A.; Linger, R.C.; & Trammell, C.J. Ch. 1, "Adopting
Cleanroom Software Engineering with a Phased Approach."
Cleanroom Software Engineering: A Reader. Oxford,
England: Blackwell Publishers, 1996.

Head, G.E. Ch. 11, "Six Sigma Software Using Cleanroom
Software Engineering Techniques." Cleanroom Software
Engineering: A Reader. Oxford, England: Blackwell
Publishers, 1996.

Linger, R.C; Mills, H.D.; & Witt, B.I. Structured
Programming: Theory and Practice. Reading, Ma.: Addison-
Wesley, 1979.

Linger, R.C. & Mills, H.D. "A Case Study in Cleanroom
Software Engineering: The IBM COBOL Structuring Facility."
Proceedings of 12th Annual International Computer

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model ■ 121

[Linger 93]

[Linger 94]

[Mills 86]

[Mills 87]

[Mills 88]

[Mills 92]

[Poore 93]

[Poore 95a]

Software and Applications Conference. 1988. Los Alamitos,
Ca.: IEEE Computer Society Press, 1988.

Linger, R.C. "Cleanroom Software Engineering for Zero-
Defect Software." Proceedings of 15th International
Conference on Software Engineering. Baltimore, Md., May
17-21,1993. Los Alamitos, Ca.: IEEE Computer Society Press,
1993.

Linger, R.C. "Cleanroom Process Model." Ch. 6, Cleanroom
Software Engineering: A Reader, Oxford, England: Blackwell
Publishers, 1996.

Mills, H.D.; Linger R.C; & Hevner, A.R. Principles of
Information Systems Analysis and Design. New York:
Academic Press, 1986.

Mills, H.D.; Linger, R.C; & Hevner, A.R. Ch. 7, "Box-
Structured Information Systems." Cleanroom Software
Engineering: A Reader. Oxford, England: Blackwell
Publishers, 1996.

Mills, H.D. Ch. 8, "Stepwise Refinement and Verification in
Box-Structured Systems." Cleanroom Software Engineering:
A Reader. Oxford, England: Blackwell Publishers, 1996.

Mills, H.D. "Certifying the Correctness of Software."
Proceedings of 25th Hawaii International Conference on
System Sciences. Kauai, Hawaii, January 7-10, 1992. Los
Alamitos, Ca.: IEEE Computer Society Press, 1992.

Poore, J.H.; Mills, H.D.; & Mutchler, D. Ch. 5, "Planning and
Certifying Software System Reliability." Cleanroom Software
Engineering: A Reader. Oxford, England: Blackwell
Publishers, 1996.

Poore, J.H. "Usage Testing as Engineering Practice."
Proceedings of the 2nd European Industrial Symposium on
Cleanroom Software Engineering. Berlin, Germany, March
1995. Lund, Sweden: Q-Labs, 1995.

122 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

[Poore 95b]

[Poore 96a]

[Poore 96b]

[Sherer 96]

[Soni 95]

Poore, J.H.; Walton, G.H.; & Whittaker, J.A. "A
Mathematical Programming Approach to the Representation
and Optimization of Markov Usage Models." Technical
Report, Department of Computer Science, University of
Tennessee, Knoxville , Tn., 1995.

Poore, J.H. Ch. 4, "The Cleanroom Approach to Six Sigma:
Combining Information." Cleanroom Software Engineering:
A Reader. Oxford, England: Blackwell Publishers, 1996.

Poore, J.H. & Trammell, C.J. Cleanroom Software
Engineering: A Reader. Oxford, England: Blackwell
Publishers, 1996.

Sherer, S.W.; Kouchakdjian, A.; & Arnold, P.G. "Experience
Using Cleanroom Software Engineering." IEEE Software 13, 3
(May 1996): 69-76.

Soni, D.; Nord, R.; & Hofmeister, C. "Software Architecture
in Industrial Applications." Proceedings, 17th International
Conference on Software Engineering. Seattle, Wa., April 23-
30,1995. New York: Association for Computing Machinery,
1995.

[Trammell 94] Trammell, C.J. & Poore J.H. "Experimental Control in
Software Reliability Certification." Proceedings of the
Nineteenth Annual Software Engineering Workshop.
College Park, Md., October 31-November 1,1994. College
Park, Md.: NASA/GSFC Software Engineering Laboratory,
1994.

[Trammell 95] Trammell, C.J. "Quantifying the Reliability of Software:
Statistical Testing Based on a Usage Model." Proceedings of
the Second IEEE International Symposium on Software
Engineering Standards. Montreal, Quebec, Canada, August
21-25,1995. Los Alamitos, Ca.: IEEE Computer Society Press,
1995.

[Trammell 96] Trammell, C.J.; Pleszkoch, M.G.; Linger, R.C.; & Hevner, A.R.
"The Incremental Development Process in Cleanroom
Software Engineering." Decision Support Systems 17,1
(April 22,1996) 55-71.

CMU/SEI-96-TR-022 Cleanroom Software Engineering Reference Model ■ 123

[Walton 95a]

[Walton 95b]

[Whittaker 93]

[Whittaker 94a]

[Whittaker 94b]

Walton, G.H.; Poore, J.H.; & Trammell, C.J. Ch. 15,
"Statistical Testing Based on a Software Usage Model."
Cleanroom Software Engineering: A Reader. Oxford,
England: Blackwell Publishers, 1996.

Walton, G.H. & Poore J.H. "Measuring Complexity and
Coverage of Software Specifications." Technical Report,
Department of Computer Science, University of Tennessee,
Knoxville, Tn., 1995.

Whittaker, J.A. & Poore, J.H. Ch. 13, "Markov Analysis of
Software Specifications." Cleanroom Software Engineering: A
Reader. Oxford, England: Blackwell Publishers, 1996.

Whittaker, J.A. & Thomason, M.G. Ch. 14, "A Markov Chain
Model for Statistical Software Testing." Cleanroom Software
Engineering: A Reader. Oxford, England: Blackwell
Publishers, 1996.

Whittaker, J.A. & Agrawal, K.K. "A Case Study in Software
Reliability Measurement." Proceedings of the Seventh
International Quality Week, San Francisco, Ca., May 17-20,
1994. San Francisco, Ca.: Software Research, Inc., 1994.

124 ■ Cleanroom Software Engineering Reference Model CMU/SEI-96-TR-022

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY

N/A

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-96-TR-022

6a. NAME OF PERFORMING
ORGANIZATION

Software Engineering Institute

6c. ADDRESS (city, state, and zip code)

Carnegie Mellon University
Pittsburgh PA 15213

6b. OFFICE SYMBOL
(if applicable)

SEI

8a. NAME OF FUNDING/
SPONSORING ORGANIZATION

SEI Joint Program Office

8b. OFFICE SYMBOL
(if applicable)

ESC/AXS

8c. ADDRESS (city, state, and zip code)

Carnegie Mellon University
Pittsburgh PA 15213

lb. RESTRICTIVE MARKINGS

None
3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release
Distribution Unlimited

5. MONITORING ORGANIZATION REPORT NUMBER(S)

ESC-TR-96-022

7a. NAME OF MONITORING ORGANIZATION

SEI Joint Program Office

7b. ADDRESS (city, state, and zip code)

HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F19628-95-C-0003

10. SOURCE OF FUNDING NOS.
PROGRAM
ELEMENT NO

63756E

PROJECT
NO.

N/A

TASK
NO

N/A

WORK UNIT
NO.

N/A
j_

11. TITLE (Include Security Classification)

Cleanroom Software Engineering Reference Model
12. PERSONAL AUTHOR(S)

Richard C. Linger, Carmen J. Trammell
13a. TYPE OF REPORT

Final
13b. TIME COVERED

FFCM TO
14. DATE OF REPORT (year, month, day)

November 1996
15. PAGE COUNT

130 pp.
16. SUPPLEMENTARY NOTATION

17. COSATI CODES

FIELD GROUP SUB. GR.

18. SUBJECT TERMS (continue on reverse of necessary and identify by block number)

box structures, cleanroom software engineering, correctness

verification, reference models, reliability certification, software

architecture, software reeengineering, software specification,

statistical quality control, statistical testing, usage models

19. ABSTRACT (continue on reverse if necessary and identify by block number)

Cleanroom software engineering is a theory-based, team-oriented process for development and certification of high-
reliability software systems under statistical quality control. A principal objective of the Cleanroom process is
development of software that exhibits zero failures in use. The Cleanroom name is borrowed from hardware
Cleanrooms, with their emphasis on rigorous engineering discipline and focus on defect prevention rather than defect
removal. Cleanroom combines mathematically-based methods of software specification, design, and correctness
verification with statistical, usage-based testing to certify software fitness for use. Cleanroom projects have reported
substantial gains in quality and productivity. This report defines the Cleanroom Software Engineering Reference
Model.
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED ■ SAME AS RPT Q DTIC USERS I

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified, Unlimited Distribution
22a. NAME OF RESPONSIBLE INDIVIDUAL

Thomas R. Miller, Lt Col, USAF
22b. TELEPHONE NUMBER (incl. area
code)

(412) 268-7631

22c. OFFICE SYMBOL

ESC/AXS (SEI)

DD FORM 1473,83 APR EDITION of 1 JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

